

Logic Symbols

IEEE/IEC

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Port Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	B-to-A 3-STATE	150/40 (33.3)	-3 mA/24 mA (20 mA)
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Transceiver Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	A-to-B 3-STATE Output	600/106.6 (80)	-12 mA/64 mA (48 mA)
FR	B Port Flag Output	50/33.3	-1 mA/20 mA
FS	A Port Flag Output	50/33.3	-1 mA/20 mA
PARITY	Parity Bit Transceiver Input or Output	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
		600/106.6 (50)	-12 mA/64 mA (48 mA)
$\overline{\text { ERROR }}$	Parity Check Output (Active LOW)	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\text { CER }}$	R Registers Clock Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CES }}$	S Registers Clock Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPR	R Registers Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPS	S Registers Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { OEBR }}$	B Port and PARITY Output Enable (Active LOW) and Clear FR Input (Active Rising Edge)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\text { OEAS }}$	A Port Output Enable (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
	and Clear FS Input (Active Rising Edge)		

Functional Description

Data applied to the A-inputs are entered and stored in the R register on the rising edge of the CPR Clock Pulse, provided that the Clock Enable ($\overline{\mathrm{CER}}$) is LOW; simultaneously, the status flip-flop is set and the flag (FR) output goes HIGH. As the Clock Enable (CER) returns to HIGH, the data will be held in the R register. These data entered from the A-inputs will appear at the B Port I/O pins after the Output Enable (OEBR) has gone LOW. When OEBR is LOW, a parity bit appears at the PARITY pin, which will be set HIGH when there is an even number of 1 s or all 0 s at the Q outputs of the R register. After the data is assimilated, the receiving system clears the flag FR by changing the signal at the OEBR pin from LOW-to-HIGH.

Register Function Table

(Applies to R or S Register)

Inputs			Internal	Function
\mathbf{D}	$\mathbf{C P}$	$\overline{\mathbf{C E}}$	\mathbf{Q}	
X	X	H	NC	Hold Data
L	-	L	L	Load Data
H	-	L	H	
X	\dagger	L	NC	Keep Old Data

$\begin{array}{ll}\mathrm{H}=\text { HIGH Voltage Level } & \boldsymbol{\sigma}=\text { LOW-to-HIGH Transition } \\ \mathrm{L}=\text { LOW Voltage Level } & \boldsymbol{\dagger}=\text { Not LOW-to-HIGH Transition }\end{array}$ $X=$ Immaterial $\quad N C=$ No Change

Output Control

$\overline{\mathbf{O E}}$	Internal \mathbf{Q}	A or B Outputs	Function
H	X	Z	Disable Output
L	L	L	Enable Output
L	H	H	Enable Output
$\mathrm{H}=$ HIGH Voltage Level $\mathrm{L}=$ LOW Voltage Level	$\mathrm{X}=$ Immaterial $\mathrm{Z}=$ High Impedance		

Data flow from B-to-A proceeds in the same manner described for A-to-B flow. A LOW at the $\overline{C E S}$ pin and a LOW-to-HIGH transition at CPS pin enters the B-input data and the parity-input data into the S registers and the parity register respectively and set the flag output FS to HIGH. A LOW signal at the $\overline{O E A S}$ pin enables the A Port I/O pins and a LOW-to-HIGH transition of the OEAS signal clears the FS flag. When OEAS is LOW, the parity check output ERROR will be HIGH if there is an odd number of 1 s at the Q outputs of the S registers and the parity register. The flag FS can be cleared by a LOW-to-HIGH transition of the $\overline{\text { OEAS signal. }}$

Flag Flip-Flop Function Table
(Applies to R or S Flag Flip-Flop)

Inputs				Flag
Function				
	$\mathbf{C P}$	$\overline{\mathbf{O E}}$	Output	
H	X	\dagger	NC	Hold Flag
L	-	\dagger	H	Set Flag
X	X		L	Clear Flag

$\mathrm{H}=$ HIGH Voltage Level $\quad \sim=$ LOW-to-HIGH Transition = LOW Voltage Level $t=$ Not LOW-to-HIGH Transition $\mathrm{X}=$ Immaterial $\quad \mathrm{NC}=$ No

Parity Generation Function

$\overline{\text { OEBR }}$	Number of HIGHs in the Q Outputs of the R Register	Parity Output
H	X	Z
L	$0,2,4,6,8$	H
L	$1,3,5,7$	L

$\begin{array}{ll}\mathrm{H}=\text { HIGH Voltage Level } & \mathrm{X}=\text { Immaterial } \\ \mathrm{L}=\text { LOW Voltage Level } & \mathrm{Z}=\text { High Impedance }\end{array}$

Parity Check Function

$\overline{\text { OEAS }}$	Number of HIGHs in the Q Outputs of the S Register	Parity Input	$\overline{\text { ERROR }}$ Output
H	X	X	H
L	$0,2,4,6,8$	L	L
L	$1,3,5,7$	L	H
L	$0,2,4,6,8$	H	H
L	$1,3,5,7$	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
= LOW Voltage Level
X = Immaterial

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Outpu
in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation nder these conditions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	v	Min	$\begin{aligned} & \begin{array}{l} \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA} \\ (\overline{\mathrm{CER}}, \overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}, \overline{\mathrm{OEBR}}, \overline{\mathrm{OEAS}}) \end{array} \end{aligned}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			v	Min	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{FR}, \mathrm{FS}, \overline{\mathrm{ERROR}}, \mathrm{A}_{\mathrm{n}}\right)$ $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$ PARITY) $\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}}\right.$, PARITY $)$ $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\right.$ FR, FS, ERROR, $\left.\mathrm{A}_{\mathrm{n}}\right)$ $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, PARITY)
$\mathrm{V}_{\text {OL }}$	 Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{gathered} \hline 0.5 \\ 0.5 \\ 0.55 \end{gathered}$	v	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\text { FR, FS, } \overline{\text { ERROR }}) \\ & \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}}, \text { PARITY }\right) \end{aligned}$
$\overline{I_{H}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V} \\ (\overline{\mathrm{CER}}, \overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}, \overline{\mathrm{OEBR}}, \overline{\mathrm{OEAS}}) \end{array} \end{aligned}$
$\overline{I_{\text {BVI }}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V} \\ (\mathrm{CER}, \overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}, \overline{\mathrm{OEBR}}, \overline{\mathrm{OEAS}}) \end{array} \end{aligned}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (//O)			0.5	mA	Max	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V} \\ & \left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}, \text { PARITY }\right) \end{aligned}$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$ (FR, FS, ERROR, A_{n}, B_{n}, PARITY)
V_{10}	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All other pins grounded } \end{aligned}$
IOD	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \hline V_{I O D}=150 \mathrm{mV} \\ & \text { All other pins grounded } \end{aligned}$
ILL	Input LOW Current			$\begin{aligned} & -0.6 \\ & -1.2 \end{aligned}$	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (CER, $\left.\overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}\right)$ $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{OEBR}}, \overline{\mathrm{OEAS}})$
$\overline{\mathrm{I}_{\text {H }}+\mathrm{I}_{\text {OZH }}}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, PARITY)
${ }_{1 \text { IL }+l_{\text {OzL }}}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, PARITY)
Ios	Output Short- Circuit Current	$\begin{gathered} \hline-60 \\ -100 \end{gathered}$		$\begin{aligned} & \hline-175 \\ & -250 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{OV}\left(\text { FR, FS, ERROR }, A_{n}\right) \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{OV}\left(\mathrm{~B}_{\mathrm{n}}, \text { PARITY }\right) \end{aligned}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0 V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, PARITY $)$
${ }^{\text {I CCH }}$	Power Supply Current		100	150	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
${ }_{\text {CCL }}$	Power Supply Current		100	150	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {ccz }}$	Power Supply Current		110	165	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Physical Dimensions inches (millimeters) unless otherwise noted

28-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M28B
74F552 Octal Registered Transceiver with Parity and Flags

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
