

Unit Loading/Fan Out			
Pin Names	Description	HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}} \end{gathered}$
$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Data Inputs or	3.5/0.333	$70 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
	3-STATE Outputs	75/15	$-3 \mathrm{~mA} / 24 \mathrm{~mA}$
PE	Parallel Enable Input (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
U/ $\overline{\mathrm{D}}$	Up-Down Count Control Input	0.25/0.333	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
$\overline{M R}$	Master Reset Input (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
$\overline{S R}$	Synchronous Reset Input (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
$\overline{\text { CEP }}$	Count Enable Parallel Input (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable Trickle Input (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A}-0.2 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select Input Active (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	0.25/0.333	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	0.25/0.333	$5 \mu \mathrm{~A} /-0.2 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)	25/12.5	-1 mA/5 mA

Function Table

$\overline{\text { MR }}$	$\overline{\text { SR}}$	$\overline{\text { CS }}$	$\overline{\mathrm{PE}}$	$\overline{\text { CEP }}$	$\overline{\text { CET }}$	U/D	$\overline{\mathrm{OE}}$	CP	Function
X	X	H	X	X	X	X	X	X	$\mathrm{I} / \mathrm{O}_{\mathrm{a}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{h}}$ in High Z ($\overline{\mathrm{PE}}$ Disabled)
X	X	L	H	X	X	X	H	X	$\mathrm{I} / \mathrm{O}_{\mathrm{a}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{h}}$ in High Z
X	X	L	H	X	X	X	L	X	Flip-Flop Outputs Appear on I/O Lines
L	X	X	X	X	X	X	X	X	Asynchronous Reset for all Flip-Flops
H	L	X	X	X	X	X	X	\sim	Synchronous Reset for all Flip-Flops
H	H	L	L	X	X	X	X	\sim	Parallel Load all Flip-Flops
H	H		LL)	H	X	X	X	\sim	Hold
H	H		LL)	X	H	X	X	\sim	Hold ($\overline{\text { TC }}$ Held HIGH)
H	H		LL)	L	L	H	X	\sim	Count Up
H	H		LL)	L	L	L	X	\sim	Count Down

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immateria
$-=$ LOW to HIGH Clock Transition
Not $\overline{L L}=\overline{\mathrm{CS}}$ and $\overline{\mathrm{PE}}$ should never both be LOW voltage level at the same time.

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)

Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output in LOW State (Max) ESD Last Passing Voltage (Min)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.4 \\ & 2.7 \end{aligned}$			V	Min	$\mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & \hline 0.5 \\ & 0.5 \end{aligned}$	v	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}(\overline{\mathrm{TC}}), \mathrm{I} \mathrm{OL}=24 \mathrm{~mA}\left(/ / \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{IOL}_{2 \mathrm{~L}}=20 \mathrm{~mA}(\overline{\mathrm{TC}}), \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(/ \mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
$\overline{I_{H}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ (Non-//O Pins)
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (Non-//O Pins)
$\mathrm{I}_{\text {BVIt }}$	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
ICEX	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
V_{10}	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
1 OD	Output Leakage Circuit Control			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
ILL	Input LOW Current			-0.2	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ (Non-//O Pins)
$\mathrm{I}_{\text {IH \& }}$ lozh	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
IL \& lozL	Output Leakage Current			-200	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICCH	Power Supply Current		70	110	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }_{\text {CCL }}$	Power Supply Current		85	120	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {ccz }}$	Power Supply Current		85	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	70	85		80		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 11.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{T C}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{U} / \overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 3.8 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 8.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	7.5	10.0	5.0	10.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to TC	6.5	10.0	13.0	6.5	13.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{CS}}$ or $\overline{\mathrm{PE}}$ to I/O	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{CS}}$ or $\overline{\mathrm{PE}}$ to I/O	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \overline{t_{\mathrm{S}}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time $\overline{\mathrm{PE}}, \overline{\mathrm{CS}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \text { Hold Time } \\ & \overline{\mathrm{PE}}, \overline{\mathrm{CS}} \text { or } \overline{\mathrm{SR}} \text { to } \mathrm{CP} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time $\overline{\mathrm{CET}}$ or $\overline{\mathrm{CEP}}$ to CP	$\begin{aligned} & \hline 6.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & \hline 6.5 \\ & 9.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time $\overline{\text { CET or }} \overline{\mathrm{CEP}}$ to CP	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time U/D to CP	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$			$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time U/D to CP	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{W}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{W}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$t_{W}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ Pulse Width	3.0			3.0		ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	4.0			4.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
