

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\overline{\mathrm{G}} \mathrm{BA}, \mathrm{GAB}$	Enable Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A Inputs or	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
	3-STATE Outputs	$150 / 40$	$-3 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B Inputs or	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
	3-STATE Outputs	$150 / 40$	$-3 \mathrm{~mA} / 64 \mathrm{~mA}$

Functional Description

The enable inputs GAB and $\overline{\mathrm{G}} \mathrm{BA}$ control whether data is transmitted from the A bus to the B bus or from the B bus to the A bus. If both GBA and GAB are disabled (GBA HIGH and GAB LOW), the outputs are in the high impedance state and data is stored at the A and B busses. When $\bar{G} B A$ is active LOW, B data is sent to the A bus. When GAB is active HIGH, data from the A bus is sent to the B bus. If both enable inputs are active (GBA LOW and GAB HIGH) B data is sent to the A bus while A data is sent to the B bus.

Function Table

Enable Inputs	Operation		
$\overline{\text { GBA }}$	GAB	74F620	74F623
L	L	\bar{B} Data to A Bus	B Data to A Bus
H	H	\bar{A} Data to B Bus	A Data to B Bus
H	L	Z	Z
L	H	\bar{B} Data to A Bus,	B Data to A Bus,
		\bar{A} Data to B Bus	A Data to B Bus

H = HIGH Voltage Level
= LOW Voltage Level
Z = High Impedance

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)

Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)
ESD Last Passing Voltage (Min)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
DC Electrical Characteristics

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Symbol	Parameter	Min	Typ Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0		V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage $\quad 10 \%$ VCC	2.0		V	Min	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$		0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\stackrel{\text { IH }}{ }$	Input HIGH Current		5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$
$\overline{\mathrm{lbVI}}$	Input HIGH Current Breakdown Test		7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}(\mathrm{GBA}, \mathrm{GAB})$
$\overline{I_{\text {BVIT }}}$	Input HIGH Current Breakdown (1/O)		0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\overline{\mathrm{V}} \mathrm{ID}$	Input Leakage Test	4.75		V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
IOD	Output Leakage Circuit Current		3.75	$\mu \mathrm{A}$	0.0	$V_{\text {IOD }}=150 \mathrm{mV}$ All Other Pins Grounded
IL	Input LOW Current		-0.6	mA	Max	$\mathrm{V}_{1 \mathrm{IN}}=0.5 \mathrm{~V}$ (Non I/O Pins)
	Output Leakage Current		70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {LL }}+\mathrm{l}_{\text {OZL }}$	Output Leakage Current		-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current	-100	-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
lzz	Bus Drainage Test		500	$\mu \mathrm{A}$	0.0 V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {CCH }}$	Power Supply Current (74F620)		82	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}, \mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$
${ }_{\text {cCL }}$	Power Supply Current (74F620)		82	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {CCZ }}$	Power Supply Current (74F620)		95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z
${ }_{\text {cCH }}$	Power Supply Current (74F623)		65	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }_{\text {cCL }}$	Power Supply Current (74F623)		82	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW, $\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}$
$\mathrm{I}_{\text {ccz }}$	Power Supply Current (74F623)		85	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics
74F620

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A Input to B Output (74F620)	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay B Input to A Output (74F620)	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A Input to B Output (74F623)	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay B Input to A Output (74F623)	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PZH}}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time G$B A$ Input to A Output	$\begin{aligned} & \hline 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time GBA Input to A Output	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZL}} \end{aligned}$	Enable Time GAB Input to B Output (74F620)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \hline 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Disable Time GAB Input to B Output (74F620)	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time GAB Input to B Output (74F623)	$\begin{aligned} & \hline 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 7.5 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Disable Time GAB Input to B Output (74F623)	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
Package Number M20B

