FAIRCHILD

SEMICONDUCTOR

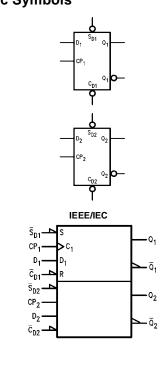
April 1988 Revised July 1999

74F74 Dual D-Type Positive Edge-Triggered Flip-Flop

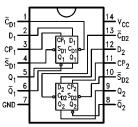
General Description

The F74 is a dual D-type flip-flop with Direct Clear and Set inputs and complementary (Q, \overline{Q}) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to

the outputs until the next rising edge of the Clock Pulse input.


Asynchronous Inputs: LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock

Simultaneous LOW on \overline{C}_{D} and \overline{S}_{D} makes both Q and \overline{Q} HIGH


Ordering Code:

Order Number	Package Number	Package Description
74F74SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F74SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F74PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel Specify	/ by appending the suffix letter "X" to the ordering code

Logic Symbols

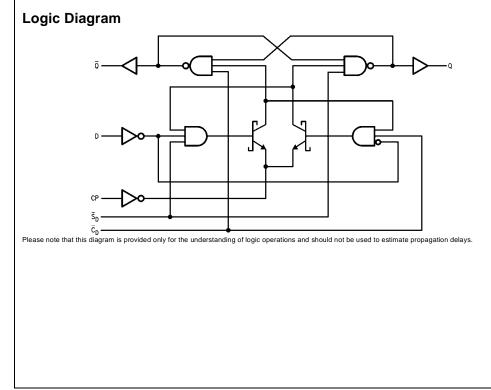
Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS009469

www.fairchildsemi.com

74F74

Unit Loading/Fan Out


Pin Names	5	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₁ , D ₂	Data Inputs	1.0/1.0	20 µA/–0.6 mA	
CP ₁ , CP ₂	Clock Pulse Inputs (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/3.0	20 µA/–1.8 mA	
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs (Active LOW)	1.0/3.0	20 μA/–1.8 mA	
$Q_1, \overline{Q}_1, Q_2, \overline{Q}_2$	Outputs	50/33.3	–1 mA/20 mA	

Truth Table

Inputs				Outputs			
SD	CD	СР	D	Q	Ø		
L	Н	Х	Х	Н	L		
н	L	х	Х	L	н		
L	L	х	Х	н	н		
н	н	~	h	н	L		
н	н	~	Ι	L	н		
Н	Н	L	Х	Q ₀	\overline{Q}_0		

H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial Q₀ = Previous Q (Q) before LOW-to-HIGH Clock Transition

Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

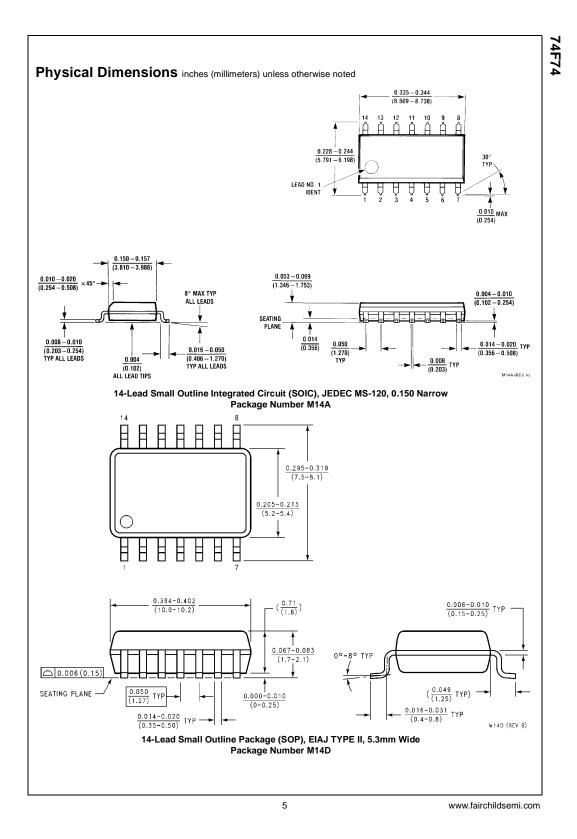
DC Electrical Characteristics

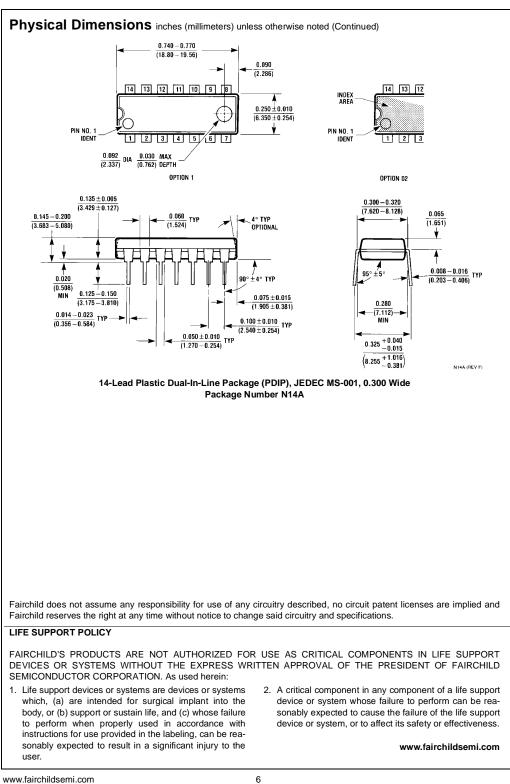
Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			v	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage								
IIH	Input HIGH				5.0	A		V 0.7V	
	Current				5.0	μA	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current				7.0		Maria	N 70V	
	Breakdown Test				7.0	μA	Max	V _{IN} = 7.0V	
ICEX	Output HIGH				50				
Leakage Current					50	μA	Max	V _{OUT} = V _{CC}	
VID	Input Leakage		4.75			v	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μΑ	0.0	All Other Pins Grounded	
IIL	Input LOW Current	Input LOW Current			-0.6	0		V _{IN} = 0.5V (D, CP)	
					-1.8	mA	Max	$V_{IN} = 0.5V (\overline{C}_D, \overline{S}_D)$	
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
Icc	Power Supply Current			10.5	16.0	mA	Max		

www.fairchildsemi.com

74F74

N .	
~	
ш	
4	
Ň	


AC Electrical Characteristics


Symbol	Parameter	T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	125		100		MHz
t _{PLH}	Propagation Delay	3.8	5.3	6.8	3.8	7.8	
t _{PHL}	CP_n to Q_n or \overline{Q}_n	4.4	6.2	8.0	4.4	9.2	ns
t _{PLH}	Propagation Delay	3.2	4.6	6.1	3.2	7.1	
t _{PHL}	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.5	7.0	9.0	3.5	10.5	ns

AC Operating Requirements

Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V			Units	
		Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0			
t _S (L)	D _n to CP _n	3.0		3.0			
t _H (H)	Hold Time, HIGH or LOW	1.0		1.0		ns	
t _H (L)	D _n to CP _n	1.0		1.0			
t _W (H)	CP _n Pulse Width	4.0		4.0			
t _W (L)	HIGH or LOW	5.0		5.0		ns	
t _W (L)	\overline{C}_{Dn} or \overline{S}_{Dn} Pulse Width	4.0		4.0		ns	
	LOW						
t _{REC}	Recovery Time	2.0		2.0		ns	
	\overline{C}_{Dn} or \overline{S}_{Dn} to CP						

www.fairchildsemi.com

6