

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input
T / \bar{R}_{n}	Transmit/Receive Input
$\mathrm{A}_{0}-\mathrm{A}_{15}$	A Bus Inputs/3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{15}$	B Bus Inputs/3-STATE Outputs

Truth Table

Inputs				Output Operating Mode	
Byte1 (0:7)		Byte2 (8:15)			
$\overline{\mathrm{OE}}_{1}$	T/ \bar{R}_{1}	$\overline{\mathrm{OE}}_{2}$	T / \bar{R}_{2}	Byte1 (0:7)	Byte2 (8:15)
L	L	H	X	Bus B Data to A	High Z State
L	H	H	X	Bus A Data to B	High Z State
H	X	L	L	High Z State	Bus B Data to A
H	X	L	H	High Z State	Bus A Data to B
L	L	L	L	Bus B Data to A	Bus B Data to A
L	H	L	H	Bus A Data to B	Bus A Data to B
H	X	H	X	High Z State	High Z State

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias
V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)

Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)
ESD Last Passing Voltage (Min)
Twice the Rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	v_{cc}	Conditions
V_{H}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\begin{gathered} 2.8 \\ 2.44 \end{gathered}$		v	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\overline{\mathrm{V} \text { OL }}$	Output LOW Voltage		0.45	0.55	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\overline{I_{H}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$
$\mathrm{l}_{\mathrm{BVI}}$	Input HIGH Current Break-Down Test			7.0	$\mu \mathrm{A}$	Max	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V} \\ \left(\overline{\mathrm{OE}}, \mathrm{~T}, \bar{R}_{\mathrm{n}}\right) \end{array} \end{aligned}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			0.1	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
ILL	Input LOW Current			$\begin{aligned} & \hline-150 \\ & -100 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \operatorname{Max} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~T} / \overline{\mathrm{R}}_{\mathrm{n}}, \mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right) \end{aligned}$
los	Output Short-Circuit Current	-100		-225	mA	Max	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \left(A_{n}, B_{n}\right) \end{aligned}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{H}}+ \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	Output Leakage Current		0	25	$\mu \mathrm{A}$	Max	$\begin{aligned} & V_{\text {OUT }}=2.7 \mathrm{~V} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}+}+ \\ & \mathrm{I}_{\mathrm{OZL}} \end{aligned}$	Output Leakage Current		-20	-150	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{V}_{1 \mathrm{D}}$	Input Leakage Test	4.75			v	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$1{ }_{\text {OD }}$	Output Circuit Leakage Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
'zz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V} \\ \left(\mathrm{~A}_{n}, B_{n}\right) \end{array} \end{aligned}$
${ }^{\text {cCH }}$	Power Supply Current		70	105	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }_{\text {CCL }}$	Power Supply Current		127	165	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {ccz }}$	Power Supply Current		71	105	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		8.0		pF	5.0	$\overline{\mathrm{OE}, \mathrm{T}} \mathrm{T} \overline{\mathrm{R}}$
			17.0		pF	5.0	$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pFF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Unit
		Min	Typ	Max	Min	Max	
${ }_{\text {tpLH }}$	Propagation Delay	1.3	2.7	4.3	1.3	4.3	ns
$t_{\text {P } \mathrm{HL}}$	A_{n} to B_{n} or B_{n} to A_{n}	1.3	2.2	4.3	1.3	4.3	
${ }_{\text {tPZH }}$	Output Enable Time	3.9	6.9	13.9	3.9	13.9	ns
tpzL		3.9	9.7	13.9	3.9	13.9	
$t_{\text {P }}$	Output Disable Time	1.8	3.9	6.3	1.8	6.3	ns
tpLz		1.8	4.4	6.3	1.8	6.3	

Extended AC Characteristics

Symbol	Parameter		$+70^{\circ} \mathrm{C}$ OV F itching	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=0 \\ \mathrm{~V}_{\mathrm{C}} \\ \mathrm{C}_{\mathrm{L}} \end{array}$	$+70^{\circ} \mathrm{C}$ OV pF	Unit
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 8.2 \\ & 8.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 14.6 \\ & 14.6 \end{aligned}$			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 3)	Pin-to-Pin Skew for HL Transitions		1.2			ns
tosth (Note 3)	Pin-to-Pin Skew for LH Transitions		2.2			ns
tost (Note 3)	Pin-to-Pin Skew for HL/LH Transitions	2.5				ns
Note 3: Skew is defined as the absolute value of the difference between the actual propagation delays for any two outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (toshl) LOW-to-HIGH (tosLh), or HIGH-to-LOW and/or LOW-to-HIGH (tost). Specifications guaranteed with all outputs switching in phase. Note 4: This specification is guaranteed but not tested The limits apply to propagation delays for all paths described switching in phase, i.e., all LOW-to-HIGH, HIGH-to-LOW, 3-STATE-to-HIGH, etc. Note 5: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.						

Physical Dimensions inches (millimeters) unless otherwise noted

44-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.650 Square
Package Number V44A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
