

## Pin Descriptions

| Pin Names | Description |
| :--- | :--- |
| $\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}$ | Output Enable Inputs |
| $\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}$ | Latch Enable Inputs |
| $\overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}$ | Chip Enable Inputs |
| $\mathrm{A}_{0}-\mathrm{A}_{7}$ | Side A Inputs or 3-STATE Outputs |
| $\mathrm{B}_{0}-\mathrm{B}_{7}$ | Side B Inputs or 3-STATE Outputs |

## Functional Description

The 74FR543 contains two sets of D-type latches, with separate input and output controls for each. For data flow from A-to-B, for example, the A-to-B Enable ( $\overline{\mathrm{CEAB}}$ ) input must be LOW in order to enter data from the A Port or take data from the B Port as indicated in the Data I/O Control Table. With $\overline{C E A B}$ LOW, a LOW signal on ( $\overline{\mathrm{LEAB}}$ ) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB line puts the A latches in the storage mode and their outputs no longer change with the $A$ inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both LOW, the B output buffers are active and reflect the data present on the output of the A latches. Control of data flow from B-to-A is similar, but using the CEBA, LEBA and OEBA.

## Data I/O Control Table

| Inputs |  |  | Latch | Output |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { CEAB }}$ | $\overline{\text { LEAB }}$ | $\overline{\text { OEAB }}$ | Status | Buffers |
| H | X | X | Latched | High Z |
| X | H | X | Latched | - |
| L | L | X | Transparent | - |
| X | X | H | - | High Z |
| L | X | L | - | Driving |
| $\mathrm{H}=$ HIGH Voltage Level |  |  |  |  |
| L $=$ LOW Voltage Level |  |  |  |  |
| $\mathrm{X}=$ Immaterial |  |  |  |  |

## Logic Diagram



## Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin Input Voltage (Note 2)

Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ )
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)
ESD Last Passing Voltage (Min)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
DC Electrical Characteristics

## Recommended Operating Conditions

| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |


| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{V}_{\mathrm{CC}}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |

\＆もGபゴレ

## AC Electrical Characteristics

| Symbol | Parameter | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Max |  |
| tpLH | Propagation Delay | 1.3 | 3.0 | 4.7 | 1.3 | 4.7 | ns |
| $\mathrm{t}_{\text {PHL }}$ | $A_{n}$ to $B_{n}$ or $B_{n}$ to $A_{n}$ | 1.3 | 2.6 | 4.7 | 1.3 | 4.7 |  |
| tpLH | Propagation Delay | 2.3 | 5.7 | 8.5 | 2.3 | 8.5 | ns |
| tpHL | LEAB to B，LEBA to A | 2.3 | 4.0 | 8.5 | 2.3 | 8.5 |  |
| tpzH | Output Enable Time | 2.3 | 4.3 | 7.4 | 2.3 | 7.4 | ns |
| tpzL |  | 2.3 | 4.9 | 7.4 | 2.3 | 7.4 |  |
| $\mathrm{t}_{\text {PHz }}$ | Output Disable Time | 1.6 | 3.9 | 7.0 | 1.6 | 7.0 | ns |
| tplz |  | 1.6 | 3.5 | 7.0 | 1.6 | 7.0 |  |

## AC Operating Requirements


Extended AC Electrical Characteristics

| Symbol | Parameter | Eight O | $-70^{\circ} \mathrm{C}$ <br> V <br> F <br> witching | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 4) } \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $A_{n}$ to $B_{n}$ or $B_{n}$ to $A_{n}$ | $\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$ | $\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & 8.7 \\ & 8.7 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay LEAB to B，LEBA to A | $\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$ | $\begin{aligned} & 10.2 \\ & 10.2 \end{aligned}$ | $\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$ | $\begin{aligned} & 12.8 \\ & 12.8 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZL}} \end{aligned}$ | Output Enable Time | $\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$ | $\begin{aligned} & \hline 11.1 \\ & 11.1 \end{aligned}$ |  |  | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$ | Output Disable Time | $\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & \hline 7.2 \\ & 7.2 \end{aligned}$ |  |  | ns |
| toshi <br> （Note 5） | Pin－to－Pin Skew for HL Transitions |  | 1.2 |  |  | ns |
| ${ }^{\mathrm{t}} \mathrm{OSLH}$ <br> （Note 5） | Pin－to－Pin Skew for LH Transitions |  | 1.0 |  |  | ns |
| tost <br> （Note 5） | Pin－to－Pin Skew for HL／LH Transitions |  | 3.1 |  |  | ns |

Note 3：This specification is guaranteed but not tested．The limits apply to propagation delays for all paths described switching in phase，
i．e．，all LOW－to－HIGH，HIGH－to－LOW，3－STATE－to－HIGH，etc．
Note 4：These specifications guaranteed but not tested．The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load．This specification pertains to single output switching only．
Note 5：Skew is defined as the absolute value of the difference between the actual propagation delays for any two outputs of the same device．The specifi－ cation applies to any outputs switching HIGH－to－LOW，（ $\mathrm{t}_{\mathrm{OSHL}}$ ），LOW－to－HIGH，（ $\mathrm{t}_{\mathrm{OSLH}}$ ），or HIGH－to－LOW and／or LOW－to－HIGH，（ $\mathrm{t}_{\mathrm{OST}}$ ）．Specifications guaran－ teed with all outputs switching in phase．

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide Package Number N24C
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be rea sonably expected to result in a significant injury to the user. device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
