EAIRCHILD SEMICONDUCTORTN 74FR74•74FR1074
 Dual D-Type Flip-Flop

General Description

The 74FR74 and 74FR1074 are dual D-type flip-flops with true and complement ($\mathrm{Q} / \overline{\mathrm{Q}}$) outputs. On the 74FR74, data at the D inputs is transferred to the outputs on the rising edge of the clock input (CP_{n}). The 74FR1074 is the negative edge triggered version of this device. Both parts feature asynchronous clear $\left(C_{D n}\right)$ and set $\left(S_{D n}\right)$ inputs which are low level enabled.
Ordering Code:

Order Number	Package Number	Package Description
74FR74SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74FR74PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74FR1074SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74FR1074PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Connection Diagrams

Logic Diagrams

AC Electrical Characteristics 74FR74

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	150	190		150		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & C P_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n} \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	ns
toshl (Note 3)	Pin to Pin Skew for HL Transitions					1.0	ns
tosth (Note 3)	Pin to Pin Skew for LH Transitions					1.0	ns
tost (Note 3)	Pin to Pin Skew for HL/LH Transitions					3.0	ns
$t^{\mathrm{Q} / \overline{\mathrm{Q}}}$ (Note 3)	True/Complement Output Skew					1.8	ns
$t_{P S}$ (Note 3)	Pin (Signal) Transition Variation					1.8	ns

AC Operating Requirements 74FR74

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $C P_{n}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW D_{n} to CP_{n}	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$t_{w}(H)$ $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ (Note 4)	CP_{n} Pulse Width HIGH or LOW	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{S}}_{\text {Dn }}$ or $\overline{\mathrm{C}}_{\text {Dn }}$ Pulse Width	4.0		4.0		ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\bar{S}_{D n}$ or $\overline{\mathrm{C}}_{\mathrm{Dn}}$ to CP_{n}	2.0		2.0		ns

Note 4: This specification is guaranteed by design.

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		Min	Typ	Max	Min Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	120	160		120	MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & C P_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n} \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	2.5 5.5 3.0 6.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}} \text { to } \mathrm{Q}_{\mathrm{n}} \text { or } \overline{\mathrm{Q}}_{\mathrm{n}}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	1.5 5.5 2.0 7.0	ns
toshl (Note 5)	Pin to Pin Skew for HL Transitions				1.5	ns
tosLh (Note 5)	Pin to Pin Skew for LH Transitions				1.5	ns
$\mathrm{t}_{\mathrm{OST}}$ (Note 5)	Pin to Pin Skew for HL/LH Transitions				3.5	ns
$t_{Q / \bar{Q}}$ (Note 5)	True/Complement Output Skew				2.0	ns
t_{PS} (Note 5)	Pin (Signal) Transition Variation				2.0	ns
Note 5: Pin-to-Pin Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$) or in opposite directions both HL and $\mathrm{LH}\left(\mathrm{t}_{\mathrm{OST}}\right)$. $\mathrm{t}_{\mathrm{OST}}$ is guaranteed by design. AC Operating Requirements 74FR1074						
Symbol	Parameter		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}=+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Min	Max	Min Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW D_{n} to CP_{n}		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW D_{n} to CP_{n}		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	ns
$t_{W}(\mathrm{H})$ $t_{w}(\mathrm{~L})$ (Note 6)	$\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width HIGH or LOW		$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{W}}(\mathrm{L})$	$\bar{S}_{\text {Dn }}$ or $\overline{\mathrm{C}}_{\text {Dn }}$ Pulse Width		4.0		4.0	ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{S}}_{\mathrm{Dn}}$ or $\overline{\mathrm{C}}_{\mathrm{Dn}}$ to CP_{n}		2.0		2.0	ns
Note 6: This specification is guaranteed by design.						

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
Package Number M14A
74FR74 • 74FR1074 Dual D-Type Flip-Flop

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
