FAIRCHILD

SEMICONDUCTOR

August 1998 Revised April 1999

74LCX241 Low Voltage Octal Buffer/Line Driver with **5V Tolerant Inputs and Outputs**

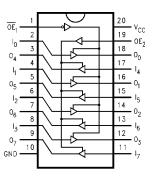
General Description

The LCX241 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver. The device is designed for low voltage (2.5V or 3.3V) $V_{\mbox{CC}}$ applications with capability of interfacing to a 5V signal environment.

The LCX241 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

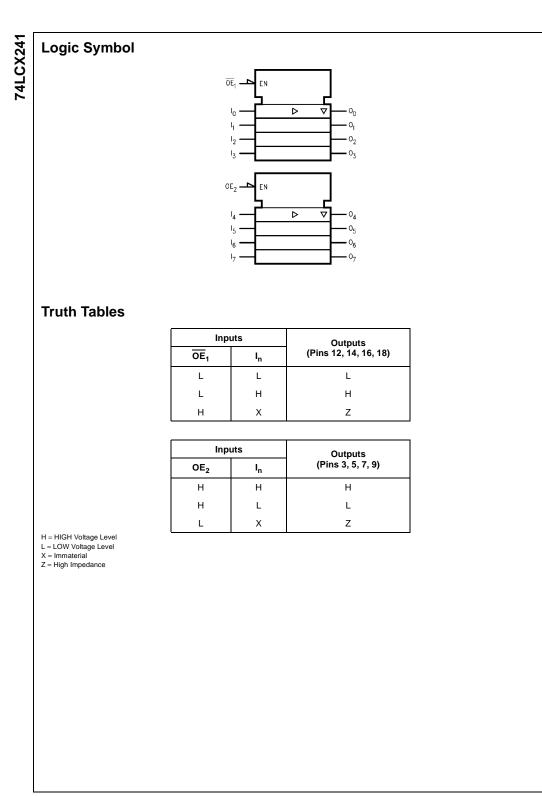
Features

- 5V tolerant inputs and outputs
- 2.3V 3.6V V_{CC} specifications provided
- \blacksquare 6.5 ns t_{PD} max (V_{CC} = 3.3V), 10 μA I_{CC} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human Body Model > 2000V
 - Machine Model > 200V


Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} and OE should be tied to GND through a resistor: the minimum value or the resistor is determined by the current-sourcing capa-bility of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX241WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX241MSA	M20D	20-Lead Small Outline Package (SOP), EIAJ Type II, 5.3mm Wide
74LCX241SJ	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm WIde
74LCX241MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{\text{OE}}_1, \text{OE}_2$	3-STATE Output Enable Inputs
I ₀ —I ₇	Inputs
O ₀ -O ₇	Outputs

Symbol	Parameter	Value	Value		Conditions			
/cc	Supply Voltage	-0.5 to +7.0				V		
<u>/</u> 1	DC Input Voltage	-0.5 to +7.0				V		
′o	DC Output Voltage	-0.5 to +7.0	Output in 3-	STATE				
		-0.5 to V _{CC} +0.5	Output in H	IGH or LOW S	State (Note 3)	V		
к	DC Input Diode Current	-50	V _I < GND			mA		
ЭК	DC Output Diode Current	-50	V _O < GND			mA		
		+50	$V_{O} < V_{CC}$			IIIA		
C	DC Output Source/Sink Current	±50				mA		
00	DC Supply Current per Supply Pin	±100				mA		
GND	DC Ground Current per Ground Pi					mA		
STG	Storage Temperature	-65 to +150				°C		
Reco	mmended Operating		4)					
Symbol	Para	ameter		Min	Max	Units		
/ _{cc}	Supply Voltage		Operating	2.0	3.6			
		Da	ta Retention	1.5	3.6	V		
/1	Input Voltage			0	5.5	V		
/ ₀	Output Voltage	HIGH o	r LOW State	0	V _{CC}	V		
			3-STATE	0	5.5	V		
_{DH} /I _{OL}	Output Current V _{CC} = 3.0V - 3.6V ±24							
			2.7V – 3.0V		±12	mA		
		V _{CC} =	2.3V – 2.7V		±8			
A	Free-Air Operating Temperature		2.3V – 2.7V	-40	±8 85	°C		
t/∆V Note 2: Th	Input Edge Rate, $V_{IN} = 0.8V-2.0V$ e Absolute Maximum Ratings are those value	, $V_{CC} = 3.0V$ as beyond which the safety of the	e device cannot be	0 e guaranteed. Th	85 10 e device should no	ns/V t be operated		
at these lin mended Op Note 3: I _O Note 4: Un	Input Edge Rate, V _{IN} = 0.8V–2.0V	, $V_{CC} = 3.0V$ es beyond which the safety of the scrical Characteristics tables a sitions for actual device operation v_{V} way not float.	e device cannot be e not guaranteed	0 e guaranteed. Th	85 10 e device should no	ns/V t be operated		
At/∆V Note 2: Th at these lin mended Op Note 3: I _O Note 4: Un	Input Edge Rate, $V_{IN} = 0.8V-2.0V$ e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The	, $V_{CC} = 3.0V$ es beyond which the safety of the scrical Characteristics tables a sitions for actual device operation v_{V} way not float.	e device cannot b e not guaranteed h.	0 e guaranteed. Th at the Absolute N	85 10 e device should no Jaximum Ratings.	ns/V t be operated		
At/∆V Note 2: Th at these lin mended Op Note 3: I _O Note 4: Un	Input Edge Rate, $V_{IN} = 0.8V-2.0V$ e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The	, $V_{CC} = 3.0V$ es beyond which the safety of the scrical Characteristics tables a sitions for actual device operation v_{V} way not float.	e device cannot b e not guaranteed h.	0 e guaranteed. Th at the Absolute M	85 10 e device should no Aaximum Ratings.	ns/V t be operated		
Note 2: Th at these lin mended Op Note 3: Io Note 4: Un	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The Iectrical Characteristi	, $V_{CC} = 3.0V$ is beyond which the safety of th actrical Characteristics tables a titions for actual device operatio y may not float.	e device cannot b e not guaranteed h.	0 e guaranteed. Th at the Absolute N	85 10 e device should no Jaximum Ratings.	ns/V t be operated The "Recom-		
At/AV Note 2: Th at these lin mended Op Note 3: I _O Note 3: I _O Note 4: Un DC E	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. sused inputs must be held HIGH or LOW. The Iectrical Characteristi Parameter	, $V_{CC} = 3.0V$ is beyond which the safety of th actrical Characteristics tables a titions for actual device operatio y may not float.	e device cannot b e not guaranteed h. Vcc (V)	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u>	85 10 e device should no Aaximum Ratings.	ns/V t be operated The "Recom-		
At/AV Note 2: Th at these lin mended Op Note 3: I _O Note 3: I _O Note 4: Un DC E	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. sused inputs must be held HIGH or LOW. The Iectrical Characteristi Parameter	, $V_{CC} = 3.0V$ is beyond which the safety of th actrical Characteristics tables a titions for actual device operatio y may not float.	e device cannot bi e not guaranteed h. Vcc (V) 2.3 - 2.7	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7	85 10 e device should no Aaximum Ratings.	ns/V t be operated The "Recom- Unit		
t/∆V Note 2: Th At these lin mended Op Note 3: Io Note 4: Un DC E Symbol	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The Iectrical Characteristi Parameter HIGH Level Input Voltage	, $V_{CC} = 3.0V$ is beyond which the safety of th actrical Characteristics tables a titions for actual device operatio y may not float.	e device cannot bi re not guaranteed h. V _{CC} (V) 2.3 – 2.7 2.7 – 3.6	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7	85 10 e device should no Aaximum Ratings. 40°C to +85°C Max	ns/V t be operated The "Recom-		
t/∆V Note 2: Th at these linimended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL}	Input Edge Rate, V _{IN} = 0.8V-2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage	, V _{CC} = 3.0V ss beyond which the safety of th ectrical Characteristics tables a titions for actual device operatio y may not float. CS Conditions	V _{CC} (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2	85 10 e device should no Jaximum Ratings. 40°C to +85°C Max 0.7	nS/V t be operated The "Recom- Unit V		
t/∆V Note 2: Th at these linimended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL}	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. uused inputs must be held HIGH or LOW. They Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage	, $V_{CC} = 3.0V$ es beyond which the safety of the certical Characteristics tables a ditions for actual device operation of may not float.	e device cannot bi e not guaranteed b. Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8	85 10 e device should no Jaximum Ratings. 40°C to +85°C Max 0.7	ns/V t be operated The "Recom- Unit V V V V		
At/∆V Note 2: Th at these lin mended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL}	Input Edge Rate, V _{IN} = 0.8V-2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage	, $V_{CC} = 3.0V$ es beyond which the safety of the cerical Characteristics tables a titions for actual device operation y may not float. CCS Conditions $OH = -100\mu A$ OH = -8 mA OH = -12 mA	e device cannot bi e not guaranteed b. Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 2.7	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2	85 10 e device should no Jaximum Ratings. 40°C to +85°C Max 0.7	ns/V t be operated The "Recom- Unit		
t/ΔV Note 2: Th at these lini mended Op Note 3: Io Note 4: Un DC E Symbol V _{IH}	Input Edge Rate, V _{IN} = 0.8V-2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. used inputs must be held HIGH or LOW. The Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the certical Characteristics tables a ditions for actual device operation of the certical characteristics tables a dition of the certical characteristics tables a distribution of the certical characteristics tables a	Vcc V/ (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 3.0	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Jaximum Ratings. 40°C to +85°C Max 0.7	ns/V t be operated The "Recom- Unit		
t/ΔV Note 2: Th at these lin mended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL}	Input Edge Rate, V _{IN} = 0.8V-2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. uused inputs must be held HIGH or LOW. They Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the critical Characteristics tables a ditions for actual device operation of the critical contract	e device cannot bi e not guaranteed b. Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 2.7	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2	85 10 e device should no Jaximum Ratings. 40°C to +85°C Max 0.7	ns/V t be operated The "Recom- Unit		
tt/∆V Note 2: Th at these linimended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL}	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. uused inputs must be held HIGH or LOW. They Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the certical Characteristics tables a ditions for actual device operation of the certical characteristics tables a dition of the certical characteristics tables a distribution of the certical characteristics tables a	Vcc V/ (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 3.0	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Aaximum Ratings. 40°C to +85°C Max 0.7 0.8 0.8	ns/V t be operated The "Recom- Unit V V V V		
At/ΔV Note 2: Th at these lim mended O _I Note 3: I _O Note 4: Un DC E Symbol V _{IL} V _{IL}	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions' table will define the cond Absolute Maximum Rating must be observed. uused inputs must be held HIGH or LOW. They Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the critical Characteristics tables a ditions for actual device operation of the comparison of the compariso	Vcc V/ (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 2.7 - 3.6 2.3 2.7 - 3.6 2.3 2.7 - 3.6 2.3 2.7 - 3.6 2.3 2.7 - 3.6 3.0 3.0 3.0 2.3 - 3.6 3.0	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Aaximum Ratings. 40°C to +85°C Max 0.7 0.8 0.7 0.8 0.2	ns/V t be operated The "Recom- Unit		
tt/∆V Note 2: Th at these linimended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL}	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions' table will define the cond Absolute Maximum Rating must be observed. uused inputs must be held HIGH or LOW. They Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the critical Characteristics tables a ditions for actual device operation of the comparison of the compariso	Vcc V/ (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 2.7 3.0 3.0 3.0 2.3 - 3.6 2.3 - 3.6	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Aaximum Ratings. 40°C to +85°C Max 0.7 0.8 0.7 0.8 0.7 0.8 0.2 0.2 0.6	nS/V t be operated The "Recom- Unit V V V V V V V V V V V V V V V V V V V		
tt/∆V Note 2: Th at these linimended O _I Note 3: I _O Note 3: I _O DC E Symbol V _{IH} V _{IL} / _{OH}	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. uused inputs must be held HIGH or LOW. They Iectrical Characteristi Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the extrical Characteristics tables a ditions for actual device operation of the extreme state of the extre	Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.7 3.0 2.3 - 3.6 2.3 - 3.6 2.7 3.0 3.0 3.0 2.3 - 3.6 2.3 - 3.6 3.0 3.0 3.0 3.0	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Aaximum Ratings. -40°C to +85°C Max 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	nS/V t be operated The "Recom- Unit V V V V V V V V V V V V V V V V V V V		
t/∆V Note 2: Th at these linimended Op Note 3: Io Note 4: Un DC E Symbol V _{IH} V _{IL} /OH	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. sused inputs must be held HIGH or LOW. The Iectrical Characteristic Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the extrical Characteristics tables a ditions for actual device operation of the extreme state of the extreme state operation	Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 2.7 3.0 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6 2.3 - 3.6	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Aaximum Ratings. -40°C to +85°C Max 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.8 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	nS/V t be operated The "Recom- Unit V V V V V V V V V V V V V V V V V V V		
at/∆V Note 2: Th at these lin mended O _I Note 3: I _O Note 4: Un DC E Symbol	Input Edge Rate, V _{IN} = 0.8V–2.0V e Absolute Maximum Ratings are those value nits. The parametric values defined in the Ele perating Conditions" table will define the cond Absolute Maximum Rating must be observed. sused inputs must be held HIGH or LOW. The Iectrical Characteristic Parameter HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage	$V_{CC} = 3.0V$ as beyond which the safety of the extrical Characteristics tables a ditions for actual device operation of the extreme state of the extre	Vcc (V) 2.3 - 2.7 2.7 - 3.6 2.3 - 2.7 2.7 - 3.6 2.3 - 3.6 2.3 - 3.6 2.7 3.0 2.3 - 3.6 2.3 - 3.6 2.7 3.0 3.0 3.0 2.3 - 3.6 2.3 - 3.6 3.0 3.0 3.0 3.0	0 e guaranteed. Th at the Absolute M T _A = - <u>Min</u> 1.7 2.0 V _{CC} - 0.2 1.8 2.2 2.4	85 10 e device should no Aaximum Ratings. -40°C to +85°C Max 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.7 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	nS/V t be operated The "Recom- Unit V V V V V V V V V V V V V V V V V V V		

74LCX241

74LCX241

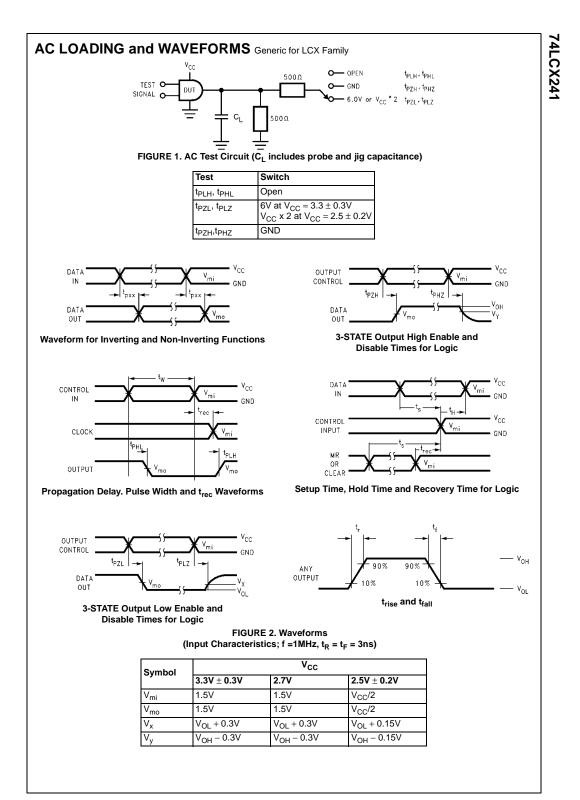
DC Electrical Characteristics (Continued)

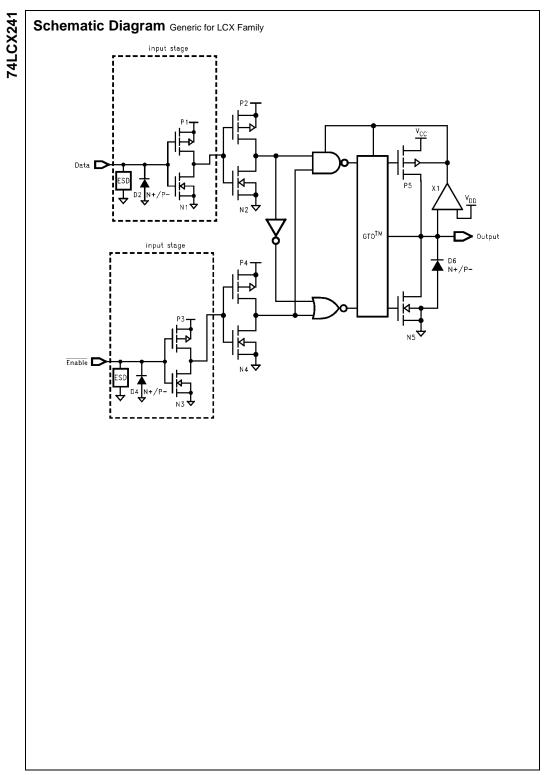
Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
		Conditions	(V)	Min	Max	onito
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		10	μA
		$3.6V \leq V_{I}, \ V_{O} \leq 5.5V$ (Note 5)	2.3 - 3.6		± 10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6v$	2.3 - 3.6		500	μA

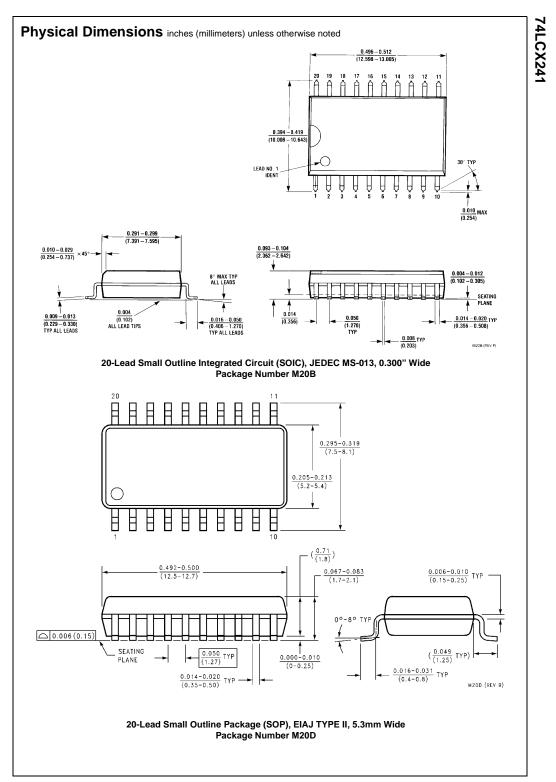
Note 5: Outputs disabled or 3-STATE only.

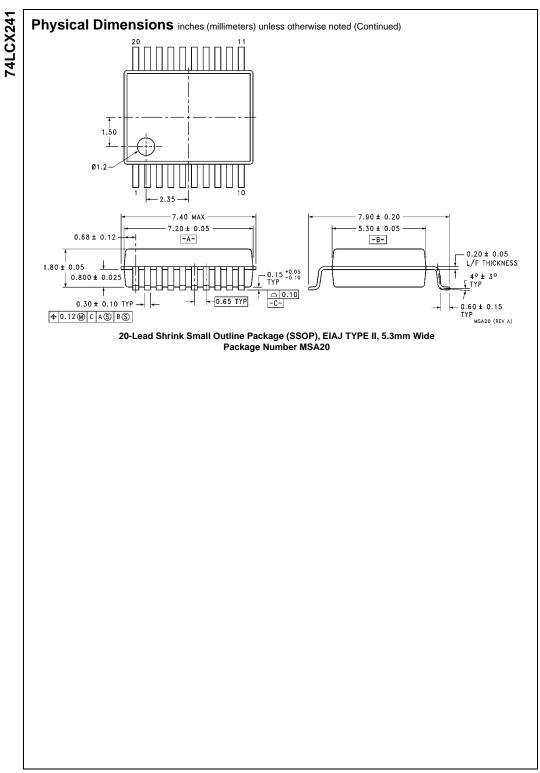
AC Electrical Characteristics

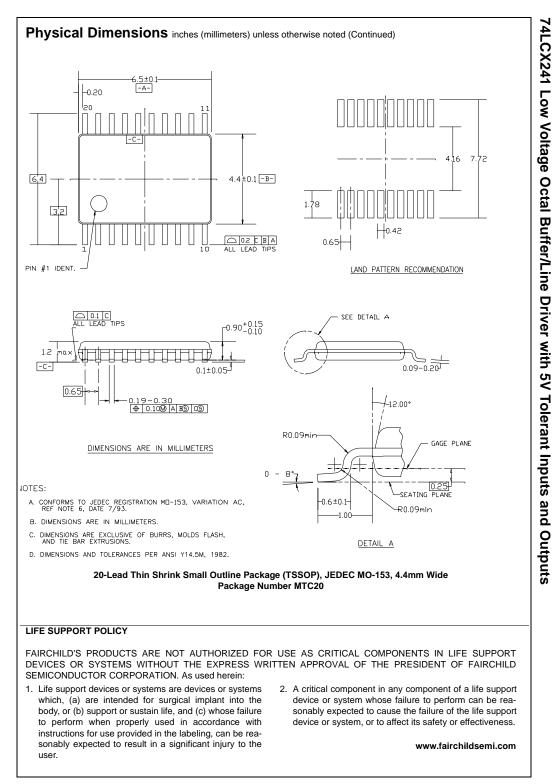
Symbol		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	Units
		C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.5	1.5	7.8	ns
t _{PLH}	Data to Output	1.5	6.5	1.5	7.5	1.5	7.8	
t _{PZL}	Output Enable Time	1.5	8.0	1.5	9.0	1.5	10.0	00
t _{PZH}		1.5	8.0	1.5	9.0	1.5	10.0	ns
t _{PLZ}	Output Disable Time	1.5	7.0	1.5	8.0	1.5	8.4	ns
t _{PHZ}		1.5	7.0	1.5	8.0	1.5	8.4	115
t _{OSHL}	Output to Output Skew (Note 6)		1.0					ns
t _{OSLH}			1.0					115


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Units
Symbol	Falanteter	Conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 50 \text{ pF}, V_{IL} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30$ pF, $V_{IH} = 2.5$ V, $V_{IL} = 0$ V	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 50 \text{ pF}, V_{IL} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30$ pF, $V_{IH} = 2.5$ V, $V_{IL} = 0$ V	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC},f = 10 MHz	25	pF

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.