February 1994 Revised April 1999

74LCX373 Low Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs

General Description

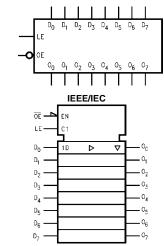
FAIRCHILD

SEMICONDUCTOR

The LCX373 consists of eight latches with 3-STATE outputs for bus organized system applications. The device is designed for low voltage (3.3V or 2.5V) V_{CC} applications with capability of interfacing to a 5V signal environment. The LCX373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- \blacksquare 8.0 ns t_{PD} max (V_{CC} = 3.3V), 10 μA I_{CC} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human Body Model > 2000V
 - Machine Model > 200V


Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX373MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

	-			
ŌE —	1	\bigcirc	20	-v _{cc}
°0 —	2		19	- 0 ₇
D ₀ —	3		18	— D ₇
D ₁ —	4		17	— D ₆
o ₁ —	5		16	- 0 ₆
0 ₂ —	6		15	-0 ₅
D ₂ —	7		14	— D ₅
D ₃ —	8		13	— D₄
0 ₃ —	9		12	-0 ₄
GND —	10		11	- LE

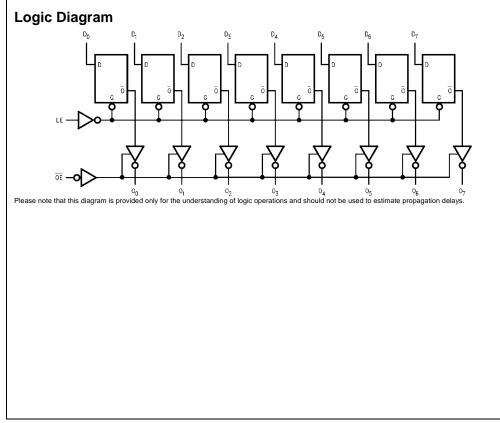
© 1999 Fairchild Semiconductor Corporation DS011995.prf

74LCX373

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
OE	Output Enable Input
O ₀ O ₇	3-STATE Latch Outputs

Truth Table


	Inputs		
LE	OE	D _n	On
Х	н	Х	Z
н	L	L	L
Н	L	Н	н
L	L	Х	O ₀

H = HIGH Voltage Level L = LOW Voltage Level Z = High Impedance X = Immaterial

 $O_0 = Previous O_0$ before HIGH-to-LOW transition of Latch Enable

Functional Description

The LCX373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Absolute Maximum Ratings(Note 2)

74LCX373

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 3)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	
		+50	V _O > V _{CC}	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
GND	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	T _A = -40°C	to +85°C	Units
Symbol	Farameter	Conditions	(V)	Min	Max	0111
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		v
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$				μA
IOFF	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0		10	μA

74LCX373

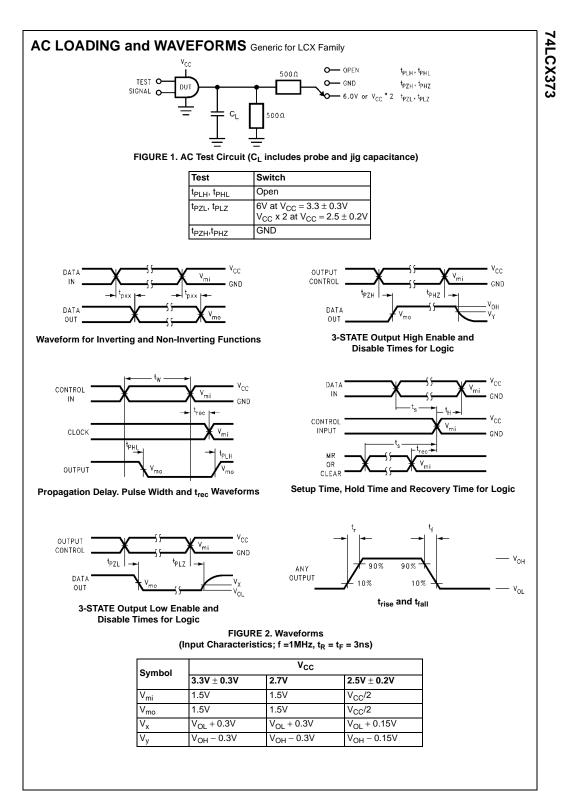
DC Electrical Characteristics (Continued)

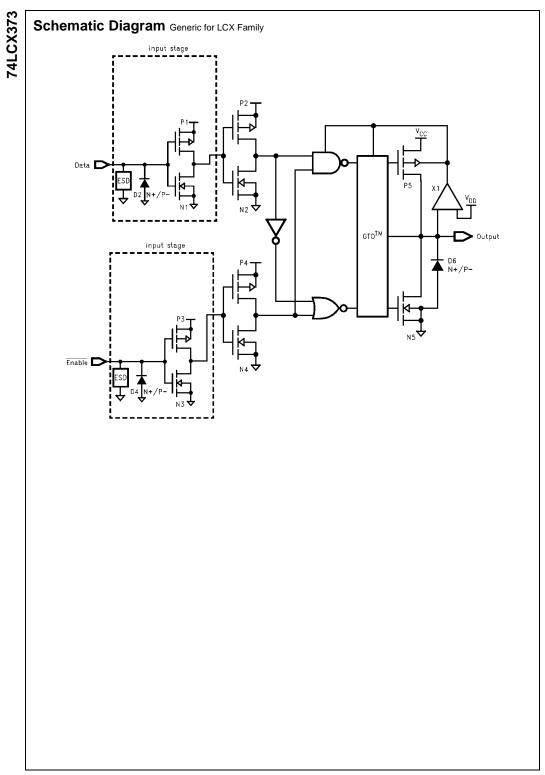
Symbol	nbol Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
Symbol	Faialletei	conditions	(V)	Min	Max	Units
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.3 - 3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μΛ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ

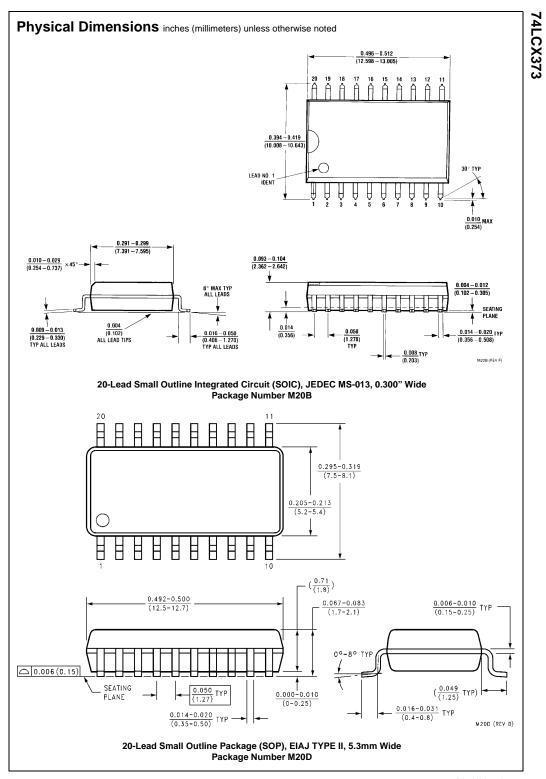
Note 5: Outputs disabled or 3-STATE only.

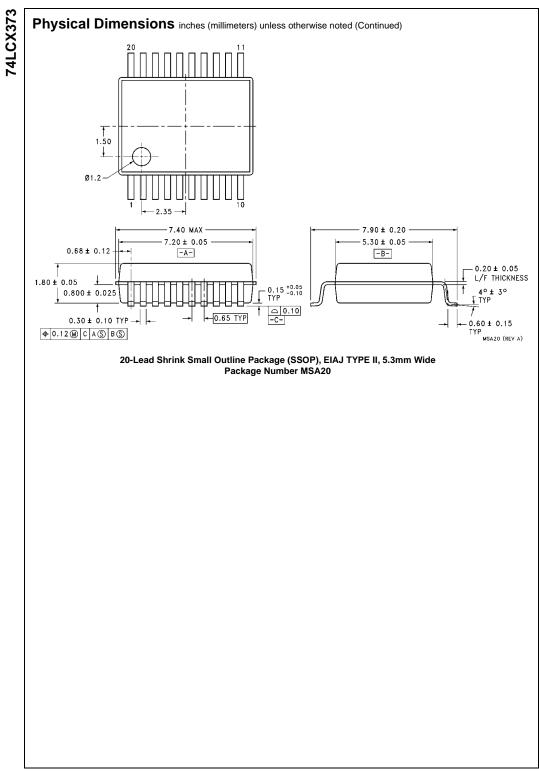
AC Electrical Characteristics

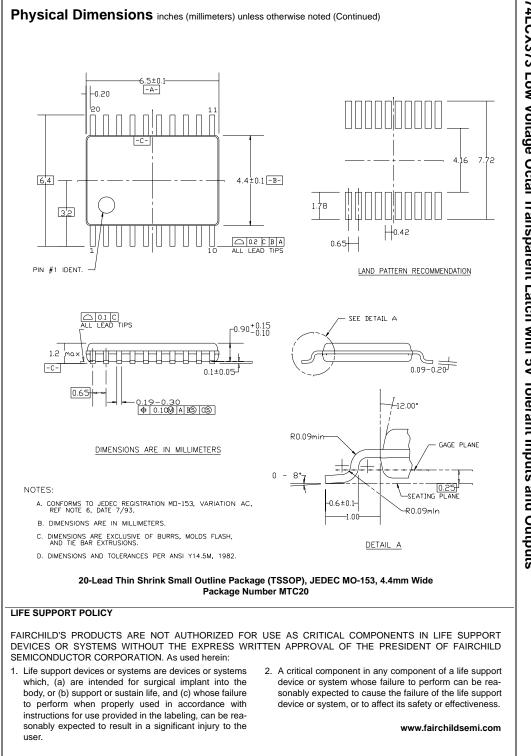
			TA	= -40°C to +	85°C, R _L = 5	00Ω		
Symbol	Parameter	V _{CC} = 3.	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{pF}$		V _{CC} = 2.7V C _L = 50pF		$V_{CC} = 2.5V \pm 0.2V$ $C_L = 30 \text{pF}$	
Symbol	Farameter	C _L =						
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	8.0	1.5	9.0	1.5	9.6	
t _{PLH}	D _n to O _n	1.5	8.0	1.5	9.0	1.5	9.6	ns
t _{PHL}	Propagation Delay	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLH}	LE to O _n	1.5	8.5	1.5	9.5	1.5	10.5	115
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PZH}		1.5	8.5	1.5	9.5	1.5	10.5	115
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{PHZ}		1.5	7.5	1.5	8.5	1.5	9.0	115
t _S	Setup Time, D _n to LE	2.5		2.5		4.0		ns
t _H	Hold Time, D _n to LE	1.5		1.5		2.0		ns
t _W	LE Pulse Width	3.3		3.3		4.0		ns
t _{OSHL}	Output to Output Skew		1.0					ns
t _{OSLH}	(Note 6)		1.0					115


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C	Units
Gymbol	i arameter	Conditions	(V)	Typical	onita
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 pF, V_I = 2.5 V, V_{IL} = 0 V$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 pF, V_I = 2.5 V, V_{IL} = 0 V$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_I = 0V or V_{CC} , f = 10 MHz	25	pF

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

74LCX373 Low Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs