74LCX374 Low Voltage Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

FAIRCHILD

SEMICONDUCTOR

74LCX374 Low Voltage Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

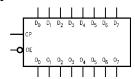
General Description

The LCX374 consists of eight D-type flip-flops featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered clock (CP) and Output Enable (\overline{OE}) are common to all flip-flops. The LCX374 is designed for low-voltage (3.3V or 2.5V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCX374 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- 8.5 ns t_{PD} max (V_{CC} = 3.3V), 10 µA I_{CC} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
- Human Body Model > 2000V
- Machine Model > 200V


Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX374WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX374MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX374MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

_			
0E - 1	\cup	20	– v _{cc}
UL I			*CC
0 ₀ — 2		19	- 0 ₇
D ₀ — 3		18	— D ₇
D ₁ — 4	Ļ	17	— D ₆
0 ₁ — 5	i	16	— 0 ₆
о ₂ — е		15	— 0 ₅
D ₂ — 7		14	— D ₅
D3 — 8	1	13	— D ₄
0 ₃ — 9	1	12	— 0 ₄
GND — 1	0	11	- CP

Pin Descriptions
Pin Names

Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input
OE	Output Enable Input
O ₀ –O ₇	3-STATE Outputs

© 1999 Fairchild Semiconductor Corporation DS011996.prf

flops.

Functional Description

The LCX374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-

Truth Table

	Inputs		
D _n	СР	OE	On
Н	~	L	Н
L	~	L	L
х	L	L	O ₀
х	х	н	Z

H = HIGH Voltage Level L = LOW Voltage Level

 $\begin{array}{l} \mathsf{Z} = \mathsf{Low} \quad \mathsf{voltage} \; \mathsf{Level} \\ \mathsf{X} = \mathsf{Immaterial} \\ \mathsf{Z} = \mathsf{High} \; \mathsf{Impedance} \\ \mathcal{r} = \mathsf{LOW-to-HIGH} \; \mathsf{Transition} \\ \mathsf{O}_0 = \mathsf{Previous} \; \mathsf{O}_0 \; \mathsf{before} \; \mathsf{HIGH-to-LOW} \; \mathsf{of} \; \mathsf{CP} \\ \end{array}$

Absolute Maximum Ratings(Note 2)

74LCX374

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 3)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC}=2.3V-2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V - 2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs or I/Os must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C$	to +85°C	Units
Symbol	Faldilleter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		v
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 – 3.6		0.8	v
V _{он}	HIGH Level Output Voltage	I _{OH} = −100 μA	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
lı	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μΑ
oz	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$				μΑ
OFF	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{V}$	0		10	μA

74LCX374

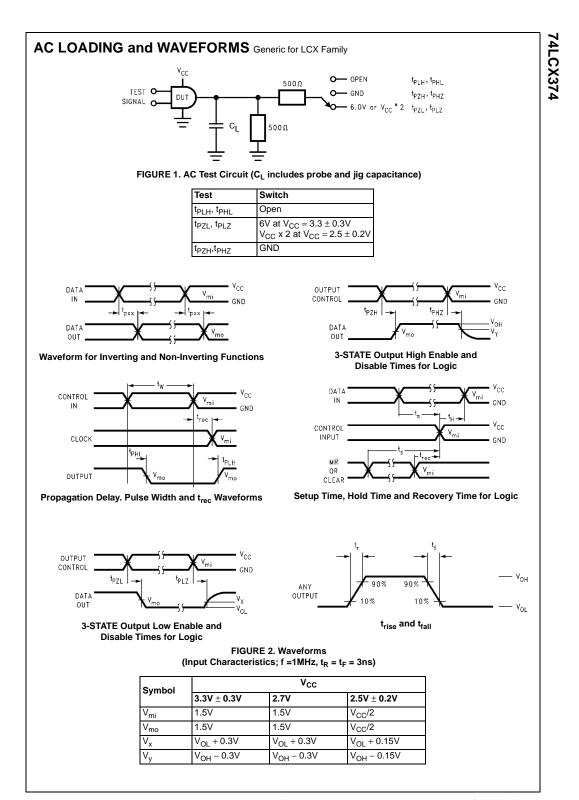
DC Electrical Characteristics (Continued)

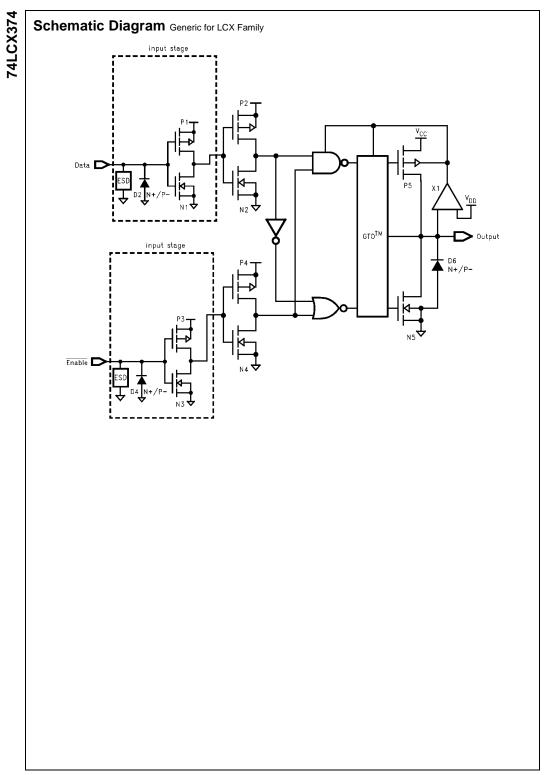
Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
Gymbol	i didiletei	Conditions	(V)	Min	Max	Onita
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		10	μA
		$3.6V \le V_I$, $V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μΛ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ

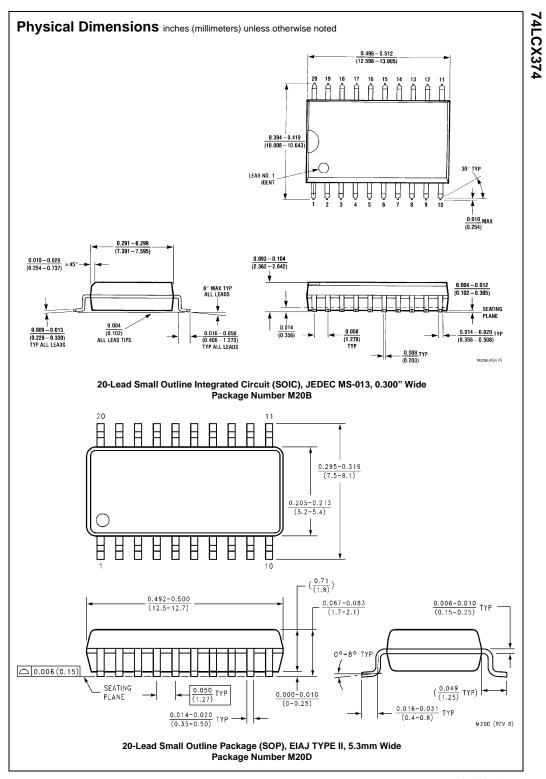
Note 5: Outputs disabled or 3-STATE only.

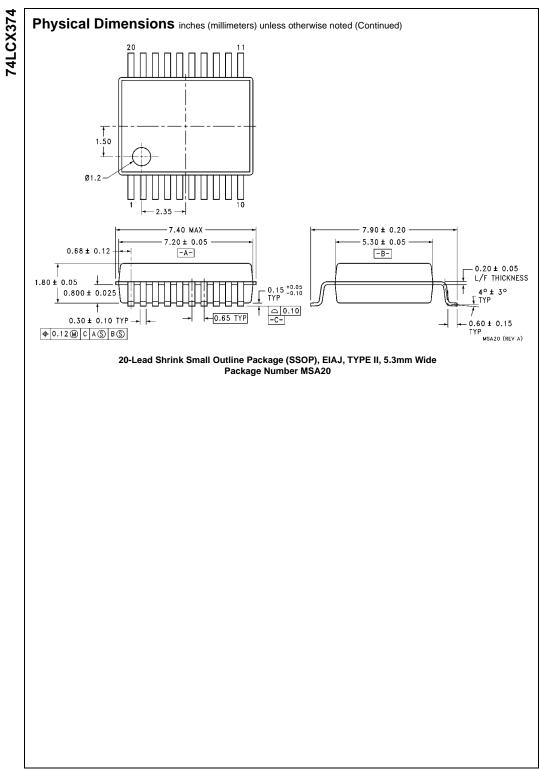
AC Electrical Characteristics

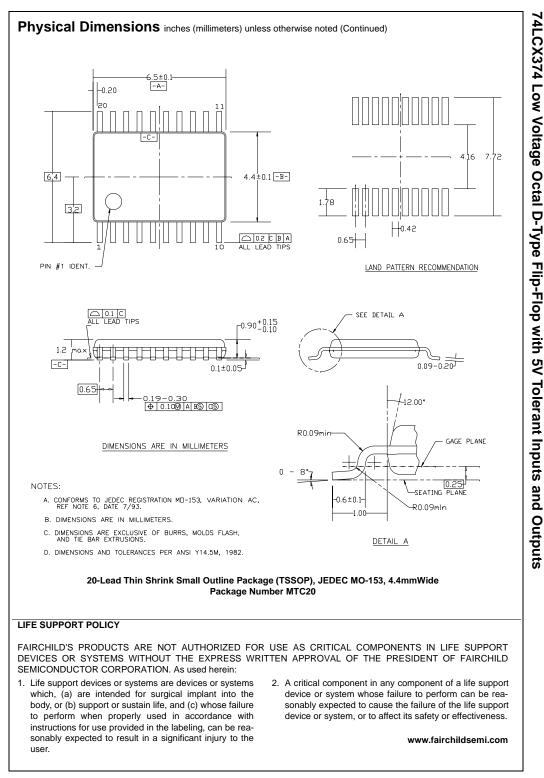
			Τ _Α	= -40°C to +	85°C, R _L = 50	Ω 00		
Symbol	Parameter	V _{CC} = 3.	$.3V \pm 0.3V$	V _{CC}	= 2.7V	V _{CC} = 2	2.5 ± 0.2	Unito
		C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		Units
		Min	Max	Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency	150		150		150		MHz
t _{PHL}	Propagation Delay	1.5	8.5	1.5	9.5	1.5	10.5	
t _{PLH}	CP to On	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	
t _{PZH}		1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{PHZ}		1.5	7.5	1.5	8.5	1.5	9.0	115
t _S	Setup Time	2.5		2.5		4.0		ns
t _H	Hold Time	1.5		1.5		2.0		ns
t _W	Pulse Width	3.3		3.3		4.0		ns
t _{OSHL}	Output to Output Skew (Note 6)		1.0					-
t _{OSLH}			1.0					ns


Note 5: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{V}, \text{ V}_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L=30 \text{ pF}, V_{IH}=2.5 \text{V}, V_{IL}=0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	25	pF

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.