FAIRCHILD

SEMICONDUCTOR

August 1998 Revised April 1999

Resistors 74LCXP16245 Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and Pull-Down

74LCXP16245 Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and Pull-Down Resistors

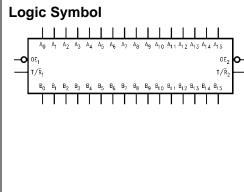
General Description

The LCXP16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The $\overline{T/R}$ inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state.

In addition, A and B port datapath pins have built-in resistors to GND allowing the pins to float without any increase in $I_{\rm CC}$ current. This feature is intended to address modular and space constrained applications where additional space consumed by external resistors is not available.

The LCXP16245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features


- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- I/O Pull-down resistors terminate inactive busses ensuring a stable bus state
- 5.5 ns t_{PD} max (V_{CC} = 3.3V), 20 µA I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- ± 24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Pinout compatible with 74 series 16245
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V 1: To ensure the high-impedance state of

Note 1: To ensure the high-impedance state during power up or down $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCXP16245MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCXP16245MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Pin Descriptions

Pin	Description			
Names				
OEn	Output Enable Input			
T/R _n	Transmit/Receive Input			
A ₀ -A ₁₅	Side A Inputs or 3-STATE Outputs			
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs			

© 1999 Fairchild Semiconductor Corporation DS500053.prf

Connection Dia	agram	
$\begin{array}{c} T/\bar{R}_{1} & 1\\ B_{0} & 2\\ B_{1} & 3\\ GND & 4\\ B_{2} & 5\\ B_{3} & 6\\ V_{CC} & 7\\ B_{4} & 8\\ B_{5} & 9\\ GND & 1\\ B_{6} & 1\\ B_{7} & 1\\ B_{8} & 1\\ B_{9} & 1\\ GND & 1\\ B_{1} & 1\\ 1\\ B_{1} & 1\\ B_{1} & 2\\ \end{array}$	1 48 2 47 3 46 4 45 5 44 65 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 16 33 17 32 18 31 19 30 20 29	$ \overrightarrow{OE}_1 \qquad \overrightarrow{A}_0 \qquad \overrightarrow{A}_1 \qquad \overrightarrow{A}_2 \qquad \overrightarrow{A}_3 \qquad \overrightarrow{A}_4 \qquad \overrightarrow{A}_5 \qquad \overrightarrow{A}_4 \qquad \overrightarrow{A}_5 \qquad \overrightarrow{A}_4 \qquad \overrightarrow{A}_6 \qquad \overrightarrow{A}_1 \qquad$
B ₁₃ - 2 GND - 2 B ₁₄ - 2 B ₁₅ - 2		

Truth Tables

Inp	uts	Outputs	
OE ₁	T/R ₁		
L	L	Bus B_0-B_7 Data to Bus A_0-A_7	
L	Н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$	
Н	Х	HIGH Z State on A_0-A_7 , B_0-B_7 (Note 2)	
Inp	uts	Outputs	
Inp OE ₂	uts T/R ₂	Outputs	
· ·	_	Outputs Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅	
OE ₂	T/R ₂		

 $H = HIGH \ Voltage \ Level \\ L = LOW \ Voltage \ Level \\ X = Immaterial \\ Z = High \ Impedance$

Note 2: A and B port inputs are still active.

Functional Descriptions

The LCXP16245 contains sixteen non-inverting bidirec-tional buffers with 3-STATE outputs. the device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The ${\rm T/R}$ inputs determine the direction of data flow through the device.

The $\overline{\text{OE}}$ inputs disable both the A and B ports by placing them in a high impedance state. The pulldown resistor (30K Ω normal) to GND is active only when the outputs are 3-STATED ($\overline{\text{OE}}$ = HIGH). When the outputs become active ($\overline{\text{OE}}$ = LOW) the resistor is removed from the circuit.

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
-		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 4)	v
I	DC Input Diode Current	-50	V _I < GND	mA
I _{ОК}	DC Output Diode Current	-50	V _O < GND	m ^
		+50	$V_{O} > V_{CC}$	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
GND	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC}=2.7V-3.0V$		±12	mA
		$V_{CC}=2.3V-2.7V$		±8	
Τ _Α	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Conditions V _{CC}	T _A = -40°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	
Symbol	Farameter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		v
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
կ	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μΑ
I _{OZ(L)}	3-STATE I/O Leakage	$V_1 \text{ or } V_0 = 0.0 \text{V}$	2.3 - 3.6		±5.0	μΑ
I _{OZ(H)}	3-STATE I/O Leakage	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	2.3 - 3.6	50	500	μΑ
IOFF	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0		10	μA

www.fairchildsemi.com

3

74LCXP16245

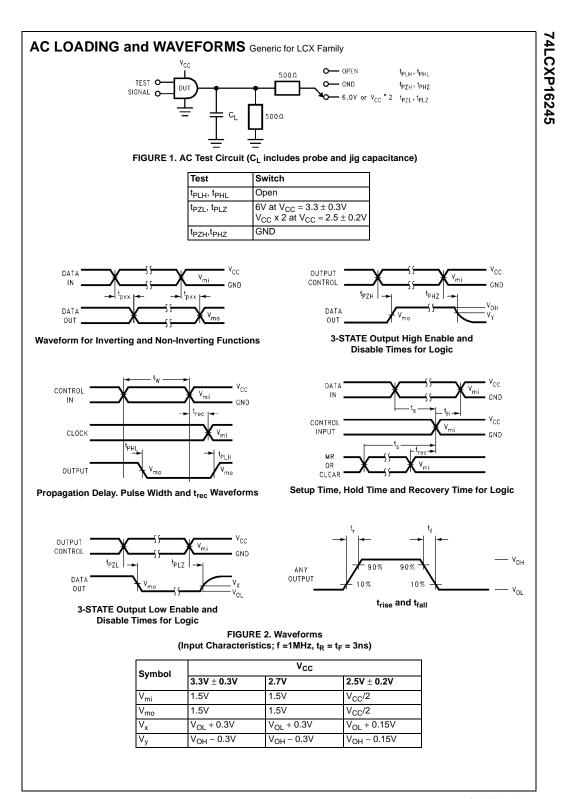
DC Electrical Characteristics (Continued)

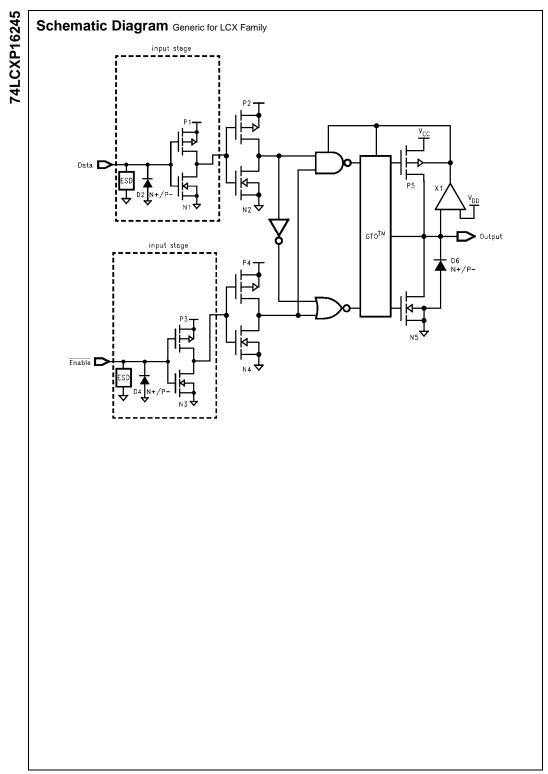
Symbol	Parameter	Conditions		$V_{CC} \qquad T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Gymbol	i arameter	Conditions	(V)	Min	Max	onita
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		20	щA
		$3.6V \le V_{I}, V_{O} \le 5.5V$ (Note 5)	2.3 - 3.6		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA

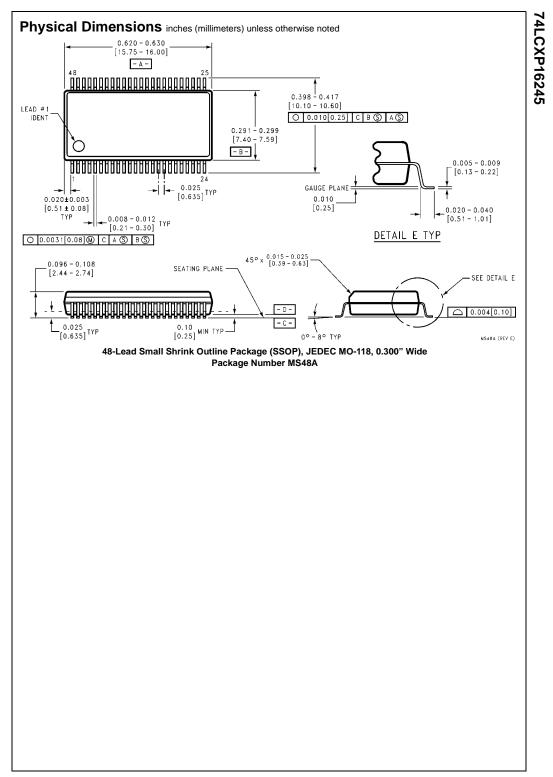
Note 5: Outputs disabled or 3-STATE only.

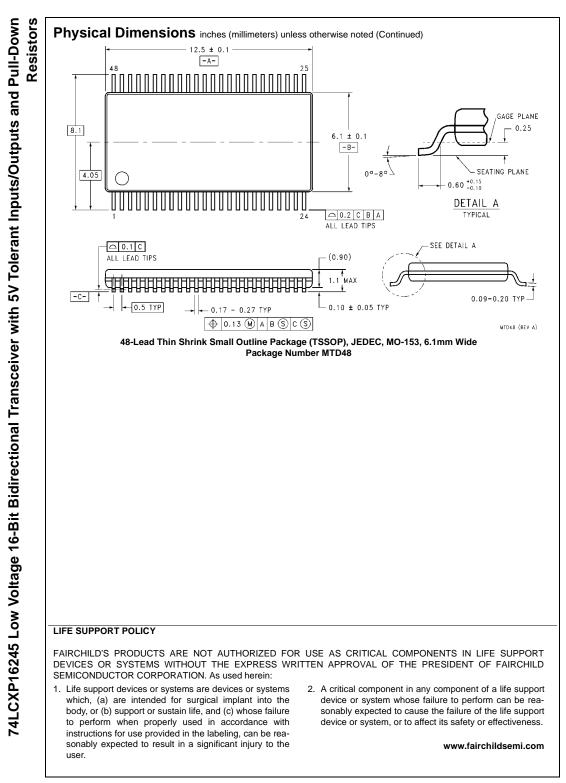
AC Electrical Characteristics

		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Parameter	$V_{CC}=3.3V\pm0.3V$ $C_L=50\ pF$		V _{CC} = 2.7V C _L = 50 pF		$\label{eq:VCC} \begin{array}{c} \text{VCC} = 2.5 \text{V} \pm 0.2 \text{V} \\ \\ \text{C}_{\text{L}} = 50 \ \text{pF} \end{array}$		Units
	Parameter							
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	5.5	1.5	6.0	1.5	6.6	
t _{PLH}	A _n to B _n or B _n to A _n	1.5	5.5	1.5	6.0	1.5	6.6	ns
t _{PZL}	Output Enable Time	1.5	7.0	1.5	8.0	1.5	9.1	ne
t _{PZH}		1.5	7.0	1.5	8.0	1.5	9.1	ns
t _{PLZ}	Output Disable Time	1.5	7.0	1.5	7.5	1.5	8.4	ns
t _{PHZ}		1.5	7.0	1.5	7.5	1.5	8.4	115
t _{OSHL}	Output to Output Skew (Note 6)		1.0					ns
t _{OSLH}			1.0					115


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Symbol	Falanetei	conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley VOL	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V, V_I = 0V \text{ or } V_{CC}$	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_I = 0V or V_{CC} , f = 10 MHz	20	pF

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.