

Absolute Maximum Ratings(Note 3)				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$	Output in 3-STATE Output in HIGH or LOW State (Note 4)	v
$I_{\text {IK }}$	DC Input Diode Current	-50	$\mathrm{V}_{1}<\mathrm{GND}$	mA
Iok	DC Output Diode Current	$\begin{aligned} & \hline-50 \\ & +50 \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{v}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
10	DC Output Source/Sink Current	± 50		mA
$\mathrm{I}_{\text {cc }}$	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 5)

Symbol		Parameter	Min	Max	Units
V_{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	HIGH or LOW State	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		$3-\mathrm{STATE}$	0	5.5	
$\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	Output Current	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V}$		± 12	
		$\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V}$		± 8	mA
		$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V}$		± 4	
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	$\mathrm{~ns} / \mathrm{V}$

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 4: I_{O} Absolute Maximum Rating must be observed
Note 5: Unused pins (Inputs or I/O's) must be held HIGH or LOW. They may not Float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.7		V
			2.7-3.6	2.0		
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.3-2.7		0.7	V
			2.7-3.6		0.8	
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.7	2.0		
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	3.0	2.0		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	3.0		0.55	
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	2.7		0.6	
		$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA}$	3.0		0.8	
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$

74LCXR162245

DC Electrical Characteristics (Continued)						
Symbol	Parameter	Conditions	$\begin{aligned} & v_{c c} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
loz	3-STATE I/O Leakage	$0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {IH }}$ or V_{IL}				
Ioff	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ ((ote 6)	2.3-3.6		± 20	
$\triangle{ }^{\text {a }}$	Increase in I Cc per Input	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.3-3.6		500	$\mu \mathrm{A}$

Note 6: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosLh). Parameter guaranteed by design.
Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	0.35	V
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	2.5	0.25	
VoLV	Quiet Output Dynamic Valley VoL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{1 \mathrm{H}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	3.3	-0.35	V
		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$	2.5	-0.25	

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{I / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

Waveform for Inverting and Non-Inverting Functions

3-STATE Output High Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic
 Disable Times for Logic

FIGURE 2. Waveforms

Symbol	V_{CC}		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Schematic Diagram Generic for LCX Family

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
Package Number MS48A
74LCXR162245 Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and 26Ω Series

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
