

Truth Table

Inputs					Outputs	
$\overline{\mathbf{E}}$	$\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{0}}$	$\overline{\mathbf{Z}}$	\mathbf{Z}	
H	X	X	X	H	L	
L	L	L	L	\bar{I}_{0}	I_{0}	
L	L	L	H	\bar{I}_{1}	I_{1}	
L	L	H	L	$\overline{\mathrm{I}}_{2}$	I_{2}	
L	L	H	H	$\overline{\mathrm{I}}_{3}$	I_{3}	
L	H	L	L	$\overline{\mathrm{I}}_{4}$	I_{4}	
L	H	L	H	$\overline{\mathrm{I}}_{5}$	I_{5}	
L	H	H	L	$\overline{\mathrm{I}}_{6}$	I_{6}	
L	H	H	H	\bar{I}_{7}	I_{7}	

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Functional Description
The LVQ151 is a logic implementation of a single pole, 8 -position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both true and complementary outputs are provided. The Enable input ($\overline{\mathrm{E}}$) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:
$Z=\bar{E} \cdot\left(I_{0} \cdot \bar{S}_{0} \cdot \bar{S}_{1} \cdot \bar{S}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\right.$
$\mathrm{I}_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+$
$\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+$
$\left.\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}\right)$
The LVQ151 provides the ability, in one package to select from eight sources of data or control information. By proper manipulation of the inputs, the LVQ151 can provide any logic function of four variables and its complement.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current (I_{K})	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Input Voltage (V_{I})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{o})	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (ا)	$\pm 50 \mathrm{~mA}$
DC V_{cc} or Ground Current	
($\mathrm{lcc}_{\mathrm{cc}}$ or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 200 \mathrm{~mA}$
Storage Temperature ($\mathrm{T}_{\text {sta }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Latch-Up Source or	
Sink Current	$\pm 100 \mathrm{~m}$

Recommended Operating Conditions (Note 2)

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.0 V to 3.6 V
Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	
V_{IN} from 0.8 V to 2.0 V	
$\mathrm{~V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be op erated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		3.0		2.58	2.48	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	3.0	0.002	0.1	0.1	V	$\mathrm{l}_{\text {OUt }}=50 \mu \mathrm{~A}$
		3.0		0.36	0.44	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{IN}	Maximum Input Leakage Current	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
IOLD	Minimum Dynamic Output Current (Note 4)	3.6			36	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ Max (Note 5)
$\mathrm{I}_{\text {OHD }}$		3.6			-25	mA	$\mathrm{V}_{\text {OHD }}=2.0 \mathrm{~V}$ (Note 5)
I_{CC}	Maximum Quiescent Supply Current	3.6		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
V ${ }_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Notes 6, 7)
V ${ }_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Notes 6, 7)
$\mathrm{V}_{\mathrm{IHD}}$	Maximum High Level Dynamic Input Voltage	3.3	1.7	2.0		V	(Notes 6, 8)
VILD	Maximum Low Level Dynamic Input Voltage	3.3	1.7	0.8		V	(Notes 6, 8)

Note 3: All outputs loaded; thresholds on input associated with output under test.
Note 4: Maximum test duration 2.0 ms , one output loaded at a time.
Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74 LVQ
Note 6: Worst case package.
Note 7: Max number of outputs defined as (n). Data inputs are driven 0 V to 3.3 V ; one output at GND.
Note 8: Max number of Data Inputs (n) switching. $\left(\mathrm{n}-1\right.$) inputs switching 0 V to 3.3 V . Input-under-test switching: 3.3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold ($\mathrm{V}_{\mathrm{IHD}}$), $\mathrm{f}=1 \mathrm{MHz}$.

AC Electrical Characteristics

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ($\mathrm{t}_{\mathrm{OLHL}}$) or LOW to HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
C_{PD} (Note 10)	Power Dissipation Capacitance	45	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 10: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz .

Physical Dimensions inches (milimeters) unless otherwise noted

16-Lead Molded Small Outline Package, SOIC EIAJ
Package Number M16D
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor
Americas	Fax: +49 (0) 1 80-530 8586	8/F Room 808 Empire Centre	4F, Natsume BI,
Customer Response Center	Email: europe.support@nsc.com	68 Mody Road, Tsimshatsui East	2-18-6 Yushima, Bunkyo-ku,
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Kowloon, Hong Kong	Tokyo 113-0034, Japan
Fax: 972-910-8036	English Tel: +44 (0) 1 193-85-68-56	Tel: 852-2722-8338	Tel: 81-3-3818-8840
	Italy Tel: +39 (0) 2575631	Fax: 852-2722-8383	Fax: 81-3-3818-8450

[^0]
[^0]: www.fairchildsemi.com

