

Devices also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering code.

## Logic Symbol



IEEE/IEC


Connection Diagram

## Pin Assignment for

 SOIC and QSOP

Pin Descriptions

| Pin Names | Description |
| :--- | :--- |
| $D_{0}-D_{7}$ | Data Inputs |
| $\overline{M R}$ | Master Reset |
| $C P$ | Clock Pulse Input |
| $Q_{0}-Q_{7}$ | Data Outputs |

Absolute Maximum Ratings (Note 1)
Supply Voltage ( $\mathrm{V}_{\mathrm{Cc}}$ )
-0.5 V to +7.0 V
DC Input Diode Current ( $I_{\text {IK }}$ )

$$
V_{1}=-0.5 \mathrm{~V}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}
$$

DC Input Voltage ( $\mathrm{V}_{1}$ )
DC Output Diode Current ( $\mathrm{l}_{\mathrm{OK}}$ )

$$
V_{O}=-0.5 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}
$$

DC Output Voltage ( $\mathrm{V}_{\mathrm{O}}$ )
DC Output Source
or Sink Current (I)
DC $\mathrm{V}_{\mathrm{CC}}$ or Ground Current
( $I_{\mathrm{CC}}$ or $\mathrm{I}_{\mathrm{GND}}$ )
Storage Temperature ( $\mathrm{T}_{\mathrm{STG}}$ )
DC Latch-up Source or
Sink Current -0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
$\pm 50 \mathrm{~mA}$
$\pm 400 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## Recommended Operating

## Conditions (Note 2)

| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2.0 V to 3.6 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{l}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$ |  |
| $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V |  |
| $\mathrm{~V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ | $125 \mathrm{mV} / \mathrm{ns}$ |

DC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{Cc}}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ | Guaranteed Limits |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Minimum High Level Input Voltage | 3.0 | 1.5 | 2.0 | 2.0 | V | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {IL }}$ | Maximum Low Level Input Voltage | 3.0 | 1.5 | 0.8 | 0.8 | V | $\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Minimum High Level Output Voltage | 3.0 | 2.99 | 2.9 | 2.9 | V | $\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$ |
|  |  | 3.0 |  | 2.58 | 2.48 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Maximum Low Level Output Voltage | 3.0 | 0.002 | 0.1 | 0.1 | V | $\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$ |
|  |  | 3.0 |  | 0.36 | 0.44 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{IN}}$ | Maximum Input Leakage Current | 3.6 |  | $\pm 0.1$ | $\pm 1.0$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$ |
| IOLD | Minimum Dynamic Output Current (Note 4) | 3.6 |  |  | 36 | mA | $\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ Max (Note 5) |
| $\mathrm{I}_{\text {OHD }}$ |  | 3.6 |  |  | -25 | mA | $\mathrm{V}_{\text {OHD }}=2.0 \mathrm{~V}$ Min (Note 5) |
| $\mathrm{I}_{\mathrm{CC}}$ | Maximum Quiescent Supply Current | 3.6 |  | 4.0 | 40.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND |
| $\mathrm{V}_{\text {OLP }}$ | Quiet Output <br> Maximum Dynamic $\mathrm{V}_{\mathrm{OL}}$ | 3.3 | 0.4 | 0.8 |  | V | (Notes 6, 7) |
| $\mathrm{V}_{\text {OLV }}$ | Quiet Output <br> Minimum Dynamic $\mathrm{V}_{\mathrm{OL}}$ | 3.3 | -0.3 | -0.8 |  | V | (Notes 6, 7) |
| $\mathrm{V}_{\text {IHD }}$ | Maximum High Level Dynamic Input Voltage | 3.3 | 1.7 | 2.0 |  | V | (Notes 6, 8) |
| VILD | Maximum Low Level Dynamic Input Voltage | 3.3 | 1.6 | 0.8 |  | V | (Notes 6, 8) |

Note 3: All outputs loaded; thresholds on input associated with output under test
Note 4: Maximum test duration 2.0 ms , one output loaded at a time
Note 5: Incident wave switching on transmission lines with impedances as low as $75 \Omega$ for commercial temperature range is guaranteed for.
Note 6: Worst case package.
Note 7: Max number of outputs defined as ( n ). Data Inputs are driven 0 V to 3.3 V ; one output at GND.
Note 8: Max number of Data Inputs ( $n$ ) switching. ( $n-1$ ) inputs switching 0 V to 3.3 V . Input-under-test switching: 3.3 V to threshold ( $\mathrm{V}_{\mathrm{ILD}}$ ), 0 V to threshold ( $\mathrm{V}_{\mathrm{IHD}}$ ), $\mathrm{f}=1 \mathrm{MHz}$.

## AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Clock Frequency | $\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 50 \\ & 90 \end{aligned}$ |  |  | $\begin{aligned} & 45 \\ & 75 \end{aligned}$ |  | MHz |
| $\mathrm{t}_{\text {PLH }}$ | Propagation Delay CP to $Q_{n}$ | $\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 9.6 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 17.6 \\ & 12.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 14.0 \end{aligned}$ | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay CP to $Q_{n}$ | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & \hline 4.0 \\ & 4.0 \end{aligned}$ | $\begin{gathered} 10.2 \\ 8.5 \end{gathered}$ | $\begin{aligned} & \hline 18.3 \\ & 13.0 \end{aligned}$ | $\begin{aligned} & \hline 3.5 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 20.5 \\ & 14.5 \end{aligned}$ | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay $\overline{M R}$ to $Q_{n}$ | $\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{gathered} \hline 10.2 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 18.3 \\ & 13.0 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 14.0 \end{aligned}$ | ns |
| toshL <br> tosLh | Output to Output Skew (Note 9) | $\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$ |  | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ |  | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | ns |

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH to LOW ( $\mathrm{t}_{\mathrm{OSHL}}$ ) or LOW to HIGH ( $\mathrm{t}_{\mathrm{OSLH}}$ ). Parameter guaranteed by design. Not tested.

## AC Operating Requirements

| Symbol | Parameter | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$ |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ | Guaranteed Minimum |  |  |
| $t_{s}$ | Setup Time, HIGH or LOW | 2.7 |  | 6.5 | 8.5 | ns |
|  | $\mathrm{D}_{\mathrm{n}}$ to CP | $\begin{gathered} 3.3 \\ \pm 0.3 \end{gathered}$ |  | 5.0 | 6.0 |  |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time, HIGH or LOW | 2.7 |  | 0.0 | 0.0 | ns |
|  | $\mathrm{D}_{\mathrm{n}}$ to CP |  |  | 0.0 | 0.0 |  |
| tw | Clock Pulse Width | 2.7 |  | 7.0 | 8.5 | ns |
|  | HIGH or LOW | $\begin{gathered} 3.3 \\ \pm 0.3 \end{gathered}$ |  | 5.5 | 6.0 |  |
| $t_{W}$ | $\overline{\mathrm{MR}}$ Pulse Width | 2.7 |  | 7.0 | 8.5 | ns |
|  | HIGH or LOW | $\begin{gathered} 3.3 \\ \pm 0.3 \end{gathered}$ |  | 5.5 | 6.0 |  |
| $t_{w}$ | Recovery Time | 2.7 |  | 5.0 | 6.5 | ns |
|  | $\overline{\mathrm{MR}}$ to CP | $\begin{gathered} 3.3 \\ \pm 0.3 \end{gathered}$ |  | 4.0 | 4.5 |  |

## Capacitance

| Symbol | Parameter | Typ | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=$ Open |
| $\mathrm{C}_{\mathrm{PD}}$ (Note 10) | Power Dissipation Capacitance | 35 | pF | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |

Note 10: $\mathrm{C}_{\text {PD }}$ is measured at 10 MHz .


Physical Dimensions inches (millimeters) unless otherwise noted


20-Lead (0.300" Wide) Molded Small Outline Package, SOIC JEDEC
Package Number M20B


20-Lead Shrink Molded Small Outline Package, SOIC EIAJ
Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


20-Lead (0.150" Wide) Molded Shrink Small Outline Package, SSOP JEDEC
(also known as QSOP)
Package Number MQA20

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Fairchild Semiconductor | Fairchild Semiconductor | Fairchild Semiconductor | National Semiconductor |  |
| Corporation | Europe | Fax: $+49(0) 180-5308586$ | Hong Kong Ltd. | 13th Foor, Straight Block, |

