

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{1}, \mathrm{D}_{2}$	Data Inputs
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock Pulse Inputs
$\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$	Direct Clear Inputs
$\overline{\mathrm{S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$	Direct Set Inputs
$\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$	Outputs

Truth Table

Inputs				Outputs	
$\overline{\mathbf{S}}_{\text {D }}$	$\bar{C}_{\text {D }}$	CP	D	Q	$\overline{\mathbf{Q}}$
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H
H	H	\sim	H	H	L
H	H	\sim	L	L	H
H	H	L	X	Q_{0}	\bar{Q}_{0}

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial
$\widetilde{=}=$ LOW-to-HIGH Clock Transition
$\mathrm{Q}_{0}\left(\overline{\mathrm{Q}}_{0}\right)=$ Previous $\mathrm{Q}(\overline{\mathrm{Q}})$ before LOW-to-HIGH Transition of Clock

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current ($\mathrm{I}_{1 /}$)	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Input Voltage (V_{l})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current ($\mathrm{I}_{\text {KK }}$)	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{o})	-0.5 V to to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (1)	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current (I_{CC} or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 200 \mathrm{~mA}$
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DC Latch-Up Source or	
Sink Current	$\pm 100 \mathrm{~mA}$

Recommended Operating
 Conditions (Note 2)

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.0 V to 3.6 V
Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$	0 V to V_{CC}
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	
V_{IN} from 0.8 V to 2.0 V	
$\mathrm{~V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

\qquad
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Charac teritics tables are not guaranteed at the absolute maximum ratings. The "Rec ommended Operating Conditions" table will define the conditions for actua device operation
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level	3.0	1.5	2.0	2.0	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		3.0		2.58	2.48	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	3.0	0.002	0.1	0.1	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		3.0		0.36	0.44	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{IN}	Maximum Input Leakage Current	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\mathrm{I}_{\text {OLD }}$	Minimum Dynamic (Note 4) Output Current	3.6			36	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ Max (Note 5)
$\mathrm{I}_{\text {OHD }}$		3.6			-25	mA	$\mathrm{V}_{\text {OHD }}=2.0 \mathrm{~V}$ Min (Note 5)
I_{CC}	Maximum Quiescent Supply Current	3.6		2.0	20.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3	0.2	0.8		V	(Notes 6, 7)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3	-0.2	-0.8		V	(Notes 6, 7)
$\mathrm{V}_{\text {IHD }}$	Maximum High Level Dynamic Input Voltage	3.3	1.7	2.0		V	(Notes 6, 8)
VILD	Maximum Low Level Dynamic Input Voltage	3.3	1.6	0.8		V	(Notes 6, 8)

Note 3: All outputs loaded; thresholds on input associated with output under test.
Note 4: Maximum test duration 2.0 ms , one output loaded at a time.
Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ.
Note 6: Worst case package
Note 7: Max number of outputs defined as (n). Data inputs are driven 0 V to 3.3 V ; one output at GND.
Note 8: Max number of Data Inputs (n) switching. $(\mathrm{n}-1)$ inputs switching 0 V to 3.3 V . Input-under-test switching: 3.3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold
($\mathrm{V}_{\mathrm{IHD}}$), $\mathrm{f}=1 \mathrm{MHz}$

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$		$\begin{aligned} & 40 \\ & 95 \end{aligned}$		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n}	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 9.6 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 16.9 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.0 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}} \text { to } \mathrm{Q}_{\mathrm{n}}$	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 12.6 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 16.9 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 19.0 \\ & 13.5 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 9.6 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 16.0 \end{aligned}$	ns
${ }_{\text {t }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.6 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 19.7 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 21.0 \\ & 14.5 \end{aligned}$	ns
toshl tosLh	Output to Output Skew (Note 9) Data to Output	$\begin{gathered} \hline 2.7 \\ 3.3 \pm 0.3 \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tOSHL) or LOW to HIGH (tOSLH). Parameter guaranteed by design.

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ	Guaranteed Minimum		
$\mathrm{t}_{\text {s }}$	Set-up Time, HIGH or LOW	2.7	1.8	5.0	6.5	ns
		3.3 ± 0.3	1.5	4.0	4.5	
$t_{\text {H }}$	Hold Time, HIGH or LOW	2.7	-2.4	0.5	0.5	ns
	D_{n} to CP_{n}	3.3 ± 0.3	-2.0	0.5	0.5	
tw	Pulse Width	2.7	3.6	7.0	10.0	ns
		3.3 ± 0.3	3.0	5.5	7.0	
$\mathrm{t}_{\text {rec }}$	Recovery Time	2.7	-3.0	0	0	ns
		3.3 ± 0.3	-2.5	0	0	

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
C_{PD} (Note 10)	Power Dissipation Capacitance	25	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 10: C_{PD} is measured at 10 MHz .

Physical Dimensions inches (milimeters) unless otherwise noted

14-Lead (0.150" Wide) Molded Small Outline Integrated Circuit, JEDEC (SC) Package Number M14A

