

March 1999 Revised April 1999

74LVT16244 • 74LVTH16244 Low Voltage16-Bit Buffer/Line Driver with 3-STATE Outputs

General Description

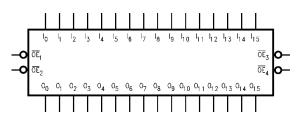
The LVT16244 and LVTH16244 contain sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual 3-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

The LVTH16244 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs

These buffers and line drivers are designed for low-voltage (3.3V) V $_{CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16244 and LVTH16244 are fabricated with an advanced BiCMOS

technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation

Features


- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs (74LVTH16244), also available without bushold feature (74LVT16244).
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 16244
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVT16244MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVT16244MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74LVTH16244MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVTH16244MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Logic Symbol

© 1999 Fairchild Semiconductor Corporation

DS500151

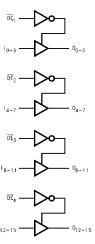
Connection Diagram

ŌE, —	1	\bigcirc	48	_ 0 E ₂
			47	_
o ₀ —	2			— l ₀
01 —	3		46	— I ₁
GND —	4		45	— GNE
o ₂ —	5		44	- I ₂
03 —	6		43	— I ₃
v _{cc} —	7		42	— v _{cc}
04 -	8		41	— I ₄
05 -	9		40	— I ₅
GND -	10		39	— GNE
06 -	11		38	— I ₆
07 -	12		37	— I ₇
08 —	13		36	— I ₈
o ₉ —	14		35	۔ وا —
GND -	15		34	— GNE
010 -	16		33	- I ₁₀
0,1	17		32	- I _{1 1}
v _{cc} —	18		31	- v _{cc}
012	19		30	- 1 ₁₂
013 —	20		29	- I ₁₃
GND —	21		28	— GNE
014 —	22		27	- 1,4
015 —	23		26	- I ₁₅
OE ₄ —	24		25	$-\frac{15}{0E_3}$
4				0-3

Functional Description

The LVT16244 and LVTH16244 contain sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Pin Descriptions


Pin Names	Description
OE n	Output Enable Inputs (Active Low)
I ₀ –I ₁₅ O ₀ –O ₁₅	Inputs
O ₀ -O ₁₅	Outputs

Truth Table

In	puts	Outputs	
OE ₁	I ₀ –I ₃	O ₀ -O ₃	
L	L	L	
L	Н	Н	
Н	X	Z	
In	puts	Outputs	
OE ₂	I ₄ –I ₇	O ₄ -O ₇	
L	L	L	
L	Н	Н	
Н	X	Z	
In	Inputs		
ŌE ₃	I ₈ -I ₁₁	O ₈ -O ₁₁	
L	L	L	
L	Н	Н	
Н	X	Z	
In	puts	Outputs	
ŌE ₄	I ₁₂ -I ₁₅	O ₁₂ -O ₁₅	
L	L	L	
L	Н	Н	
Н	X	Z	

H = High Voltage Level
L = Low Voltage Level
X = Immaterial
Z = High Impedance

Logic Diagram

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in High or Low State (Note 2)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
Io	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	IIIA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter		Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
V _I	Input Voltage	0	5.5	V
Гон	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free Air Operating Temperature	-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

	Parameter			T _A =	-40°C to +8	35°C		
Symbol			V _{CC} (V)	Min	Typ (Note 3)	Max	Units	Conditions
V _{IK}	Input Clamp Diode V	oltage	2.7			-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0			V	V _O ≤ 0.1V or
V _{IL}	Input LOW Voltage		2.7-3.6			0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage	Э	2.7-3.6	V _{CC} - 0.2		n		I _{OH} = -100 μA
			2.7	2.4			V	$I_{OH} = -8 \text{ mA}$
			3.0	2.0				$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage		2.7			0.2		I _{OL} = 100 μA
			2.7			0.5		I _{OL} = 24 mA
			3.0			0.4	V	I _{OL} = 16 mA
			3.0			0.5		I _{OL} = 32 mA
			3.0			0.55		I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minim	um Drive	3.0	75			4	$V_1 = 0.8V$
(Note 4)				-75			μA	$V_1 = 2.0V$
I _{I(OD)}	Bushold Input Over-I		3.0	500			4	(Note 5)
(Note 4)	Current to Change S	tate		-500			μA	(Note 6)
II	Input Current		3.6			10		V _I = 5.5V
		Control Pins	3.6			±1		V _I = 0V or V _{CC}
		Data Pins	3.6			-5	μΑ	$V_I = 0V$
						1	1	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage (Surrent	0			±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down		0 – 1.5V			±100	μΑ	V _O = 0.5V to 3.0V
	3-STATE Current			1	1	i		$V_I = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Lea	kage Current	3.6			-5	μΑ	V _O = 0.5V
I _{OZH}	3-STATE Output Lea	kage Current	3.6			5	μΑ	V _O = 3.0V

DC Electrical Characteristics (Continued)

		V	$T_A = -40^{\circ}C$ to $+85^{\circ}C$				
Symbol	Parameter	V _{CC} (V)	Min	Тур	Max	Units	Conditions
		. ,		(Note 3)			
I _{OZH} +	3-STATE Output Leakage Current	3.6			10	μА	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current	3.6			0.19	mA	Outputs High
I _{CCL}	Power Supply Current	3.6			5.0	mA	Outputs Low
I _{CCZ}	Power Supply Current	3.6			0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current	3.6			0.19	mA	V _{CC} ≤ V _O ≤ 5.5V, Outputs Disabled
ΔI_{CC}	Increase in Power Supply Current	3.6			0.2	mA	One Input at V _{CC} – 0.6V
	(Note 7)						Other Inputs at V _{CC} or GND

Note 3: All typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$.

Note 4: Applies tobushold versions only (LVTH16244).

Note 5: An external driver must source at least the specified current to switch from LOW to HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH to LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 8)

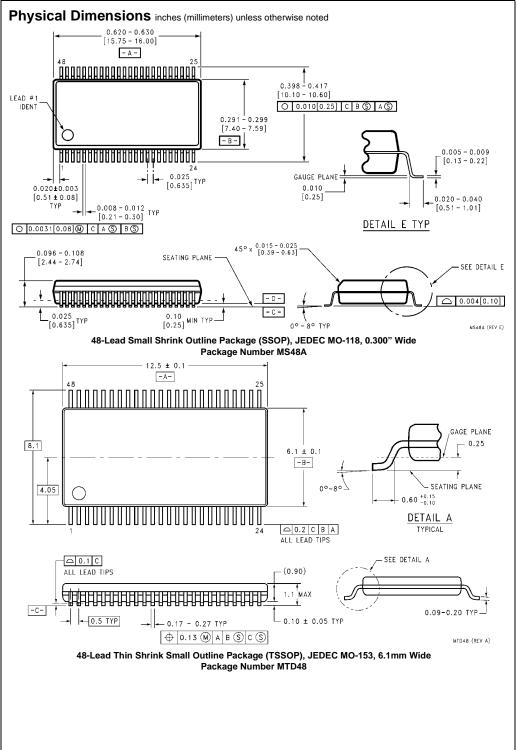
Symbol	Parameter	V _{CC}	T _A = 25°C			Units	Conditions	
Cymbol	i arameter	(V)	Min	Тур	Max	Onics	$C_L = 50 \text{ pF}, R_L = 500\Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)	

Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		$T_A = -40$ °C to +85 °C $C_L = 50$ pF, $R_L = 500\Omega$						
Symbol	Parameter		$V_{CC} = 3.3V \pm 0.3V$		V _{CC} =	Units		
		Min	Typ (Note 10)	Max	Min	Max	-	
t _{PLH}	Propagation Delay Data to Output	1.2		3.5	1.2	3.9		
t _{PHL}		1.2		3.5	1.2	3.9	ns	
t _{PZH}	Output Enable Time	1.2		4.0	1.2	5.0	20	
t _{PZL}		1.2		5.0	1.2	6.5	ns	
t _{PHZ}	Output Disable Time	2.0		4.7	2.0	5.2	ns	
t _{PLZ}		1.5		4.2	1.5	4.4	115	
toshl	Output to Output Skew			1.0		1.0	ns	
t _{OSLH}	(Note 11)							


Note 10: All typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com