FAIRCHILD

SEMICONDUCTOR

January 1999 Revised April 1999

74LVT16374 • 74LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

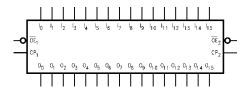
The LVT16374 and LVTH16374 contain sixteen non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (\overline{OE}) are common to each byte and can be shorted together for full 16-bit operation.

The LVTH16374 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These flip-flops are designed for low-voltage (3.3V) $V_{\rm CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16374 and LVTH16374 are fabricated with an advanced BiCMOS technology to

achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features


- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs (74LVTH16374), also available without bushold feature (74LVT16374).
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVT16374MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVT16374MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74LVTH16374MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVTH16374MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

© 1999 Fairchild Semiconductor Corporation DS012022.prf

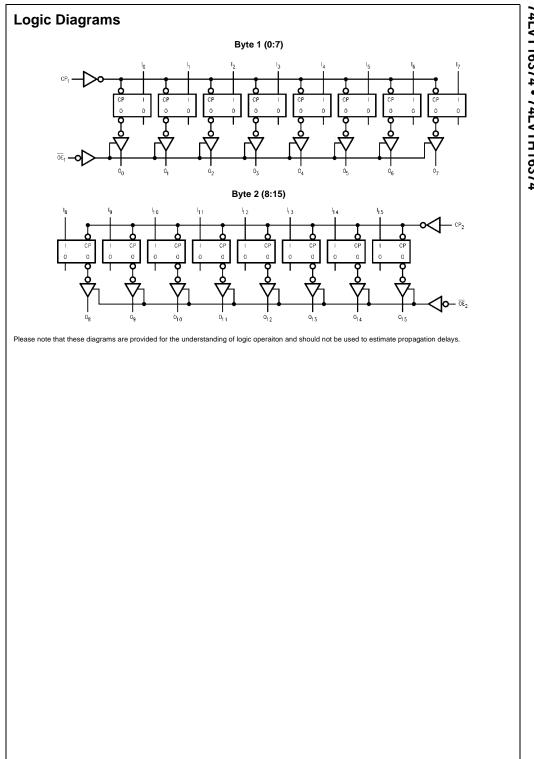
Connection D	Diagram	
$\begin{array}{c} \overline{OE}_{1} & - \\ \overline{OE}_{2} & - \\ O_{0} & - \\ O_{2} & - \\ O_{2} & - \\ O_{3} & - \\ O_{3} & - \\ O_{4} & - \\ O_{5} & - \\ O_{6} & - \\ O_{7} & - \\ O_{8} & - \\ O_{1} & - \\ O_{$	1 2 3 4 5 5 6 7 9 9 9 10 11 12 13 14 15 16 17 18 16 17 18	48 - CP ₁ 47 - lo 46 - l, 45 - GND 44 - l2 43 - l3 44 - l2 44 - l2 43 - l3 44 - l2 59 - l6 59 - l6 50 - l6 55 - l9 55 - l9 53 - l7 54 - l9 55 - l9 55 - l9 53 - l7 55 - l9 55 - l9
0 ₁₁ —	18	32 — I ₁₁

Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
CPn	Clock Pulse Input
I ₀ —I ₁₅	Inputs
O ₀ -O ₁₅	3-STATE Outputs

Truth Tables

	Inputs		Outputs
CP ₁	OE ₁	I ₀ –I ₇	0 ₀ –0 ₇
\ _	L	Н	н
~	L	L	L
L	L	Х	Oo
Х	н	х	z
	Inputs		Outputs
CP ₂	Inputs OE ₂	I ₈ -I ₁₅	Outputs O ₈ -O ₁₅
CP ₂		I ₈ –I ₁₅ Н	
	OE ₂		0 ₈ -0 ₁₅
	OE ₂	Н	0 ₈ -0 ₁₅ Н


H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial Z = HIGH Impedance

 $O_0 = Previous O_0$ before HIGH to LOW of CP

Functional Description

The LVT16374 and LVTH16374 consist of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CPn) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

74LVT16374 • 74LVTH16374

6374
VTH1
74L
374 •
VT16
74L

Absolute Maximum Ratings(Note 1)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
/1	DC Input Voltage	-0.5 to +7.0		V
/ ₀	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in High or Low State (Note 2)	
IK	DC Input Diode Current	-50	V _I < GND	mA
ОК	DC Output Diode Current	-50	V _O < GND	mA
0	DC Output Current	64	V _O > V _{CC} Output at High State	س ۸
		128	V _O > V _{CC} Output at Low State	mA
сс	DC Supply Current per Supply Pin	±64		mA
GND	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I₀ Absolute Maximum Rating must be observed.

DC Electrical Characteristics

				T _A = -4	40°C to +85°	С			
Symbol	Parameter		V _{CC} (V)	Min	Typ Max (Note 3)		Units	Conditions	
VIK	Input Clamp Diode Voltage		2.7			-1.2	V	I _I = -18 mA	
VIH	Input HIGH Voltage		2.7–3.6	2.0			V	$V_0 \le 0.1 V \text{ or}$	
VIL	Input LOW Voltage		2.7–3.6			0.8	V	$V_{O} \ge V_{CC} - 0.1V$	
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2			V	I _{OH} = -100 μA	
			2.7	2.4				I _{OH} = -8 mA	
			3.0	2.0				I _{OH} = -32 mA	
V _{OL}	Output LOW Voltage		2.7			0.2	V	I _{OL} = 100 μA	
			2.7			0.5		I _{OL} = 24 mA	
			3.0			0.4		I _{OL} = 16 mA	
			3.0			0.5		I _{OL} = 32 mA	
			3.0			0.55		I _{OL} = 64 mA	
I _{I(HOLD)}	Bushold Input Minimum Drive)	3.0	75			μΑ	V _I = 0.8V	
(Note 4)				-75				V _I = 2.0V	
I _{I(OD)}	Bushold Input Over-Drive		3.0	500			μΑ	(Note 5)	
(Note 4)	Current to Change State			-500				(Note 6)	
կ	Input Current		3.6			10	μΑ	V _I = 5.5V	
		Control Pins	3.6			±1	1	$V_I = 0V$ or V_{CC}	
		Data Pins	3.6			-5	1	$V_I = 0V$	
						1		$V_I = V_{CC}$	
I _{OFF}	Power Off Leakage Current		0			±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$	
I _{PU/PD}	Power up/down 3-STATE		0–1.5V			±100	μΑ	$V_0 = 0.5V$ to 3.0V	
	Output Current							$V_I = GND \text{ or } V_{CC}$	
lozL	3-STATE Output Leakage Cu	irrent	3.6			-5	μΑ	V _O = 0.5V	
I _{OZH}	3-STATE Output Leakage Cu	rrent	3.6			5	μΑ	V _O = 3.0V	

DC Electrica	I Characteristics	(Continued)
--------------	-------------------	-------------

			T _A = -40° C to $+85^{\circ}$ C				
Symbol	Parameter	V _{CC} (V)	Min	Typ (Note 3)	Max	Units	Conditions
I _{OZH} +	3-STATE Output Leakage Current	3.6			10	μA	$V_{CC} < V_O \le 5.5V$
ICCH	Power Supply Current	3.6			0.19	mA	Outputs High
I _{CCL}	Power Supply Current	3.6			5	mA	Outputs Low
I _{CCZ}	Power Supply Current	3.6			0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current	3.6			0.19	mA	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled
ΔI_{CC}	Increase in Power Supply Current (Note 7)	3.6			0.2	mA	One Input at $V_{CC} - 0.6V$ Other Inputs at V_{CC} or GND

Note 3: All typical values are at V_{CC} = 3.3V, $T_A = 25^{\circ}C$.

Note 4: Applies to bushold versions only (74LVTH16374).

Note 5: An external driver must source at least the specified current to switch from LOW to HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH to LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

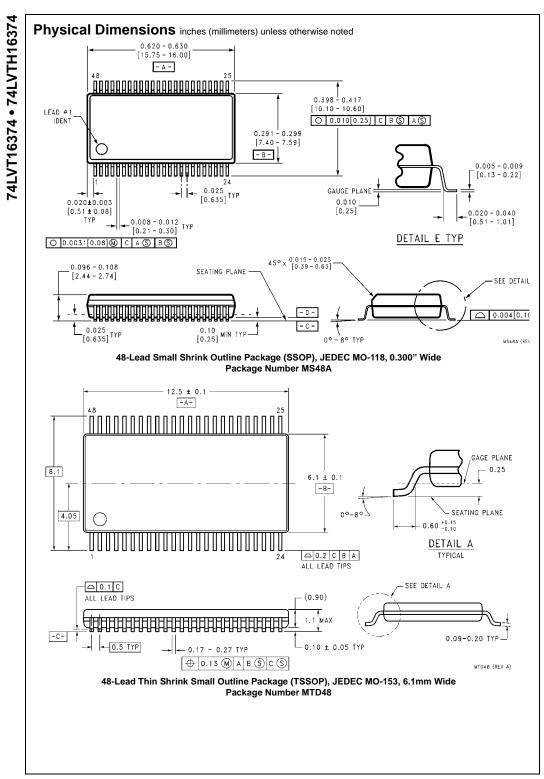
Dynamic Switching Characteristics (Note 8)

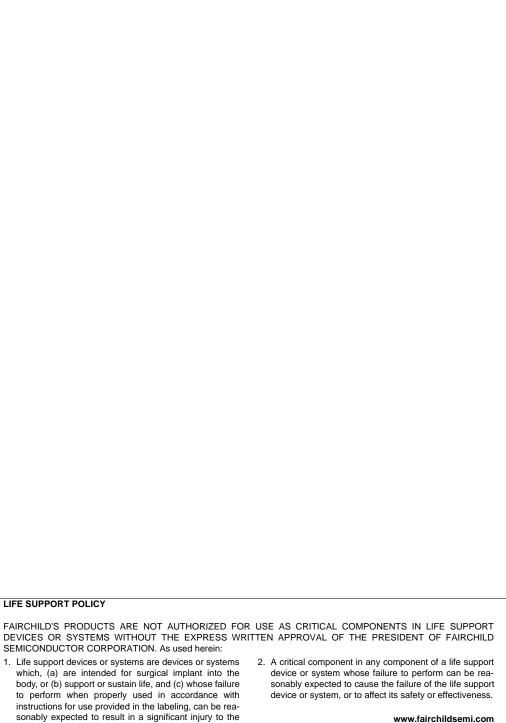
<u> </u>	Deservation	v _{cc}		T _A = 25°C		Conditions C ₁ = 50 pF,	
Symbol	Parameter	(V)	Min	Тур	Max	Units	$R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)

Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics


		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_{L} = 50 \text{ pF, } R_{L} = 500\Omega$					
Symbol	Parameter		V _{CC} = 3.3V ±0.3	BV	V _{CC}	= 2.7V	Units
		Min	Typ (Note 10)	Мах	Min	Max	
f _{max}	Maximum Clock Frequency	160			160		MHz
t _{PHL}	Propagation Delay	1.9		4.3	1.9	4.6	
t _{PLH}	CP to On	1.6		4.5	1.6	5.2	ns
t _{PZL}	Output Enable Time	1.3		4.4	1.3	5.0	
t _{PZH}		1.0		4.5	1.0	5.4	ns
t _{PLZ}	Output Disable Time	1.5		4.6	1.5	4.8	ns
t _{PHZ}		2.0		5.0	2.0	5.4	115
t _S	Setup Time	1.8			2.0		ns
t _H	Hold Time	0.8			0.1		ns
t _W	Pulse Width	3.0			3.0		ns
t _{OSHL}	Output to Output Skew (Note 11)	1		1.0		1.0	
t _{OSLH}				1.0		1.0	ns


Note 10: All typical values are at V_{CC} = 3.3V, T_A = 25^{\circ}C.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_O = 0V$ or V_{CC}	8	pF

www.fairchildsemi.com

74LVT16374 • 74LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

user.