74LVT2245 • 74LVTH2245 Low Voltage Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs and 25Ω Series Resistors in the B Port Outputs

General Description

Ordering Code:

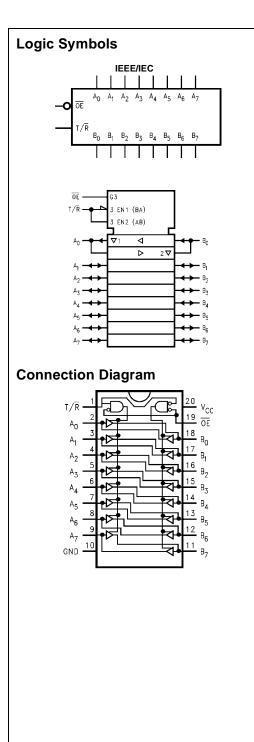
FAIRCHILD

SEMICONDUCTOR TM

The LVT2245 and LVTH2245 contain eight non-inverting bidirectional buffers with 3-STATE outputs and are intended for bus-oriented applications. The Transmit/ Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (active-LOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both A and B Ports by placing them in a high impedance state. The equivalent 25Ω-series resistor in the B Port helps reduce output overshoot and undershoot.

The LVTH2245 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These transceivers are designed for low voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT2245 and LVTH2245 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.


Features

- \blacksquare Input and output interface capability to systems at 5V $\rm V_{CC}$
- Equivalent 25Ω series resistor on B Port outputs
- Bushold data inputs eliminate the need for external pull-
- up resistors to hold unused inputs (74LVTH2245), also available without bushold feature (74LVT2245)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –12 mA/+12 mA on B Port, –32 mA/+64 mA on A Port
- Latch-up performance exceeds 500 mA

Order Number	Package Number	Package Description
74LVT2245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVT2245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVT2245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVT2245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH2245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVTH2245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVTH2245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH2245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS012173

Pin Descriptions

Pin Names	Description
OE	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs

Truth Table

Inp	uts	Output
OE	T/R	Outputs
L	L	Bus B Data to Bus A
L	н	Bus A Data to Bus B
н	х	HIGH-Z State

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{ОК}	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	- MA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage		2.7	3.6	V
VI	Input Voltage		0	5.5	V
I _{OH}	HIGH-Level Output Current	A Port		-32	س ۸
		B Port		-12	mA
OL	LOW-Level Output Current	A Port		64	mA
		B Port		12	mA
T _A	Free Air Operating Temperature		-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

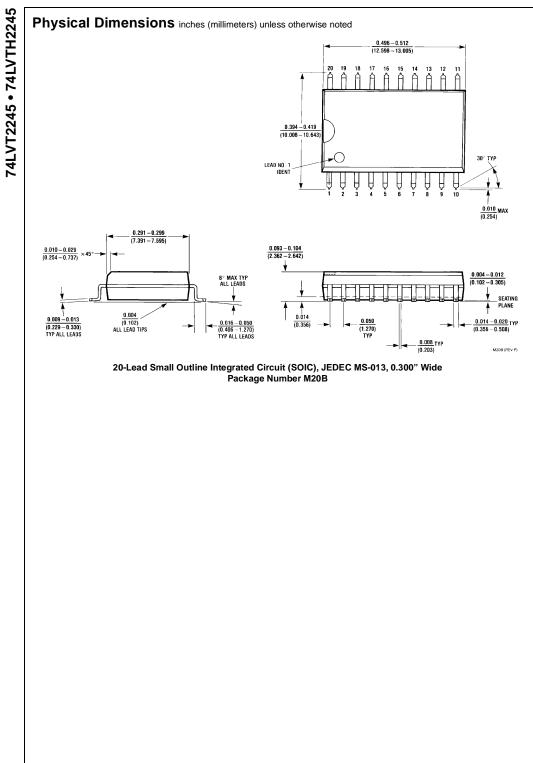
Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 2: I_{O} Absolute Maximum Rating must be observed.

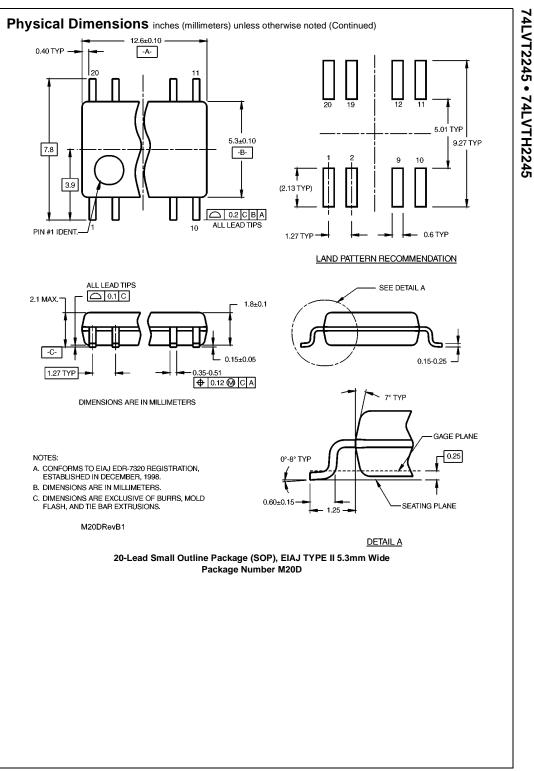
Cumhal	Deveryor		V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Symbol	Paramete	r	(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage	ł	2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7–3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7–3.6		0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage	A Port	2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		v	$I_{OH} = -32 \text{ mA}$
		B Port	3.0	2.0		V	$I_{OH} = -12 \text{ mA}$
			2.7–3.6	V _{CC} -0.2		V	I _{OH} = -100 μA
V _{OL}	Output LOW Voltage	A Port	2.7		0.5		I _{OL} = 24 mA
			3.0		0.4	v	I _{OL} = 16 mA
			3.0		0.5	v	I _{OL} = 32 mA
			3.0		0.55		I _{OL} = 64 mA
		B Port	3.0		0.8	V	I _{OL} = 12 mA
			2.7		0.2	V	I _{OL} = 100 μA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	V _I = 0.8V
(Note 3)				-75		μΛ	$V_{I} = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 4)
(Note 3)	Current to Change State			-500		μΛ	(Note 5)
h.	Input Current		3.6		10		V _I = 5.5V
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μοι	$V_I = 0V$
					1		$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Curren	t	0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down		0–1.5V		±100	μA	V _O = 0.5V to 3.0V
	3-STATE Current		0 1.00		100	μ	$V_I = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Leakage	Current	3.6		-5	μΑ	$V_0 = 0.5V$
I _{OZL} (Note 3)	3-STATE Output Leakage	Current	3.6		-5	μA	V _O = 0.0V
I _{OZH}	3-STATE Output Leakage	Current	3.6		5	μΑ	V _O = 3.0V
I _{OZH} (Note 3)	3-STATE Output Leakage	Current	3.6		5	μΑ	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage	Current	3.6		10	μΑ	$V_{CC} < V_O \le 5.5 V$
I _{CCH}	Power Supply Current		3.6		0.19	mA	Outputs High
I _{CCL}	Power Supply Current		3.6		5	mA	Outputs Low
I _{CCZ}	Power Supply Current		3.6		0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled
Δl _{CC}	Increase in Power Supply (Note 6)	Current	3.6		0.2	mA	One Input at V _{CC} – 0.6V Other Inputs at V _{CC} or GNE

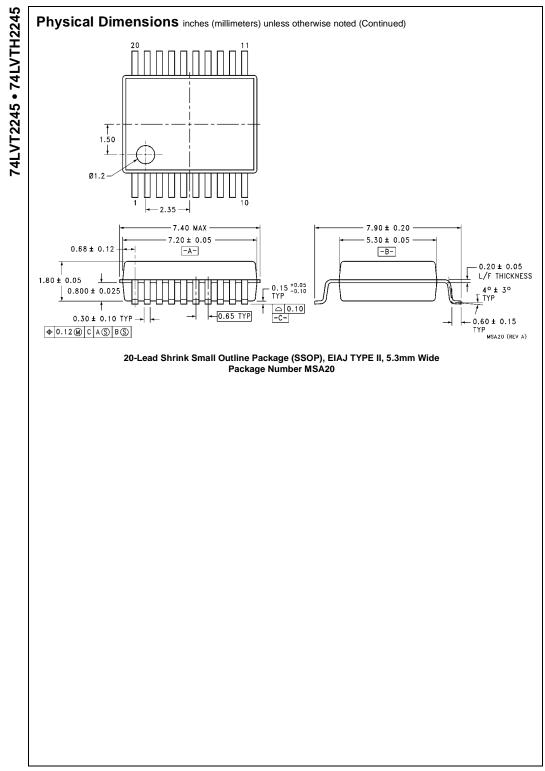
Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

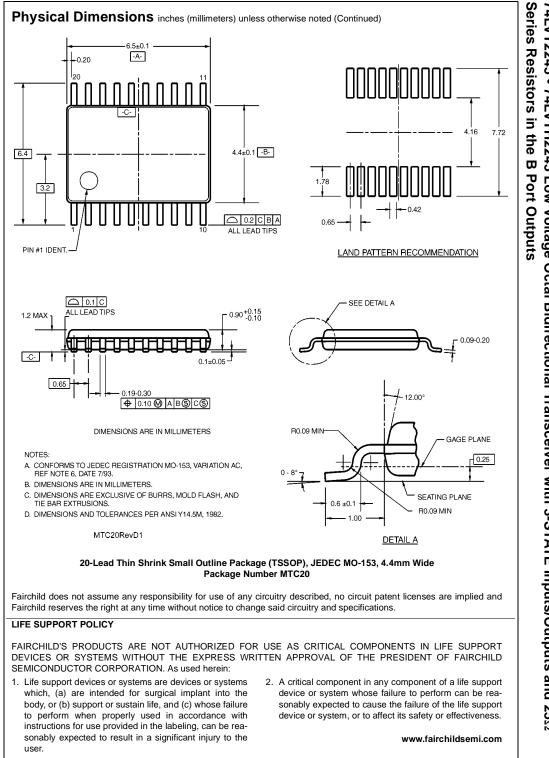
Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 7)


		v _{cc}		$T_A = 25^{\circ}C$			Conditions C _I = 50 pF,
Symbol	Parameter	(V)	Min	Тур	Max	Units	$R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 8)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 8)


Note 7: Characterized in SOIC package. Guaranteed parameter, but not tested.


Note 8: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.


					T _A = -40°0	C to +85°C		
					C _L = 50 pF,	$R_L = 500\Omega$		
Symbol		Parameter		V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} = 2.7V		Units
				Min	Max	Min	Max	
'LH	Propa	gation Delay Data to B Port Output	ıt	1.2	4.4	1.2	5.1	
HL				1.2	4.4	1.2	5.1	ns
'LH	Propa	gation Delay Data to A Port Outpu	ıt	1.2	3.6	1.2	4.0	ns
HL				1.2	3.5	1.2	4.0	_
ZH	Outpu	t Enable Time for B Port Output		1.3	6.2	1.3	7.3	ns
ZL	0.1			1.7	6.2	1.7	7.3	
ZH	Outpu	t Enable Time for A Port Output		1.3	5.5	1.3	7.1	ns
ZL	Output	t Disable Time for B Port Output		1.7 2.0	5.7 5.9	1.7 2.0	6.7 6.5	
ΉZ	Outpu	Disable fille for B Port Output		2.0	5.9	2.0	5.7	ns
LZ	Outou	t Disable Time for A Port Output		2.0	5.9	2.0	6.5	
HZ	Cuipu	Colocolo Time for A Fort Output		2.0	5.9	2.0	5.1	ns
SHL	A Port	Output to Output Skew		2.0	0.0	2.0	5.1	
SHL SLH	(Note				1.0		1.0	ns
SLH SHL		Output to Output Skew						
ISHL ISLH	(Note				1.0		1.0	ns
Symb IN I/O Iote 10: Ca		ICE (Note 10) Parameter Input Capacitance Input/Output Capacitance e is measured at frequency f = 1 MH	V _{CC} = 0V, V _I = V _{CC} = 3.0V, V _C z, per MIL-STD-883, M	= 0V or V_{CC}		Typic 4 8	cal	Units pF pF
IN I/O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
IN I/O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
N /O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4		pF
N /O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
N /O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
N /O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
N /O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
N 10		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	cal	pF
N 10		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	zal	pF
N /O		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	zal	pF
N 10		Parameter Input Capacitance Input/Output Capacitance	V _{CC} = 3.0V, V _O	0V or V _{CC} = 0V or V _{CC}		4	zal	pF

74LVT2245 • 74LVTH2245

74LVT2245 • 74LVTH2245 Low Voltage Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs and 25 Ω

www.fairchildsemi.com

9