74LVTH16501 Low Voltage 18-Bit Universal Bus Transceivers

FAIRCHILD SEMICONDUCTOR IM 74LVTH16501 Low Voltage 18-Bit Universal Bus Transceivers with 3-STATE Outputs (Preliminary) **General Description Features** The LVTH16501 is an 18-bit universal bus transceivers combining D-type latches and D-type flip-flops to allow 5V V_{CC} data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by output-enable pull-up resistors to hold unused inputs (OEAB and OEBA), latch-enable (LEAB and LEBA), and Live insertion/extraction permitted clock (CLKAB and CLKBA) inputs.

The LVTH16501 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

The transceiver is designed for low voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH16501 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Input and output interface capability to systems at

May 2000

Revised May 2000

- Bushold data inputs eliminate the need for external
- Power Up/Down high impedance provides glitch-free
- bus loading ■ Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 16501
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVTH16501MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LVTH16501MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS500101

Connection D	agram	
0EAB	1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32	GND GND GND H B ₂ H B ₃ H CC H B ₅ H B ₆ GND H B ₇ H B ₉ H B ₉ H B ₉ H B ₉ H B ₉ H B ₁ H B ₂ H B ₃ H CCC H B ₇ H B ₅ H B ₅ H B ₇ H B ₇ H B H B H B H B H B H B H B H B
A ₁₈ — 	26 31 27 30 28 29	— B ₁₈ — CLKBA — GND

Pin Descriptions

Pin Names

A ₁ -A ₁₈	Data Register A Inputs/3-STATE Outputs
B ₁ -B ₁₈	Data Register B Inputs/3-STATE Outputs
CLKAB, CLKBA	Clock Pulse Inputs
LEAB, LEBA	Latch Enable Inputs
OEAB, OEBA	Output Enable Inputs

Description

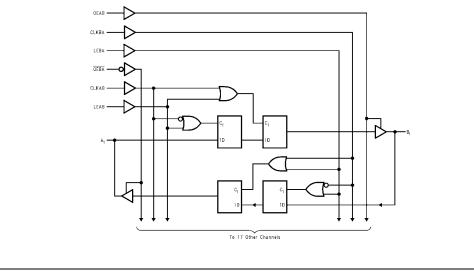
Truth Table (Note 1)

	Inp	outs		Output
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Х	Z
Н	Н	Х	L	L
н	н	Х	н	н
н	L	\uparrow	L	L
н	L	Ŷ	н	н
н	L	н	х	B ₀ (Note 2)
н	L	L	Х	B ₀ (Note 2) B ₀ (Note 3)

H = HIGH Voltage Level X = Immaterial ↑ = LOW-to-HIGH Clock Transition L = LOW Voltage Level Z = High Impedance

Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text{OEBA}},$ LEBA, and CLKBA.

Note 2: Output level before the indicated steady-state input conditions were established.


Note 3: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/ flip-flop on the HIGH-to-LOW transition of CLKAB. Outputenable OEAB is active-HIGH. When OEAB is HIGH, the outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A-to-B but uses OEBA, LEBA, and CLKBA. The output <u>enables</u> are com-plementary (OEAB is active-HIGH and OEBA is active-LOW).

Logic Diagram

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 5)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
l ₀	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	IIIA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	2.7	3.6	V	
VI	Input Voltage	0	5.5	V	
I _{ОН}	HIGH-Level Output Current		-32	mA	
I _{OL}	LOW-Level Output Current		64	mA	
T _A	Free-Air Operating Temperature	-40	85	°C	
$\Delta t/\Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V	

Note 4: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or co beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 5: I_O Absolute Maximum Rating must be observed.

www.fairchildsemi.com

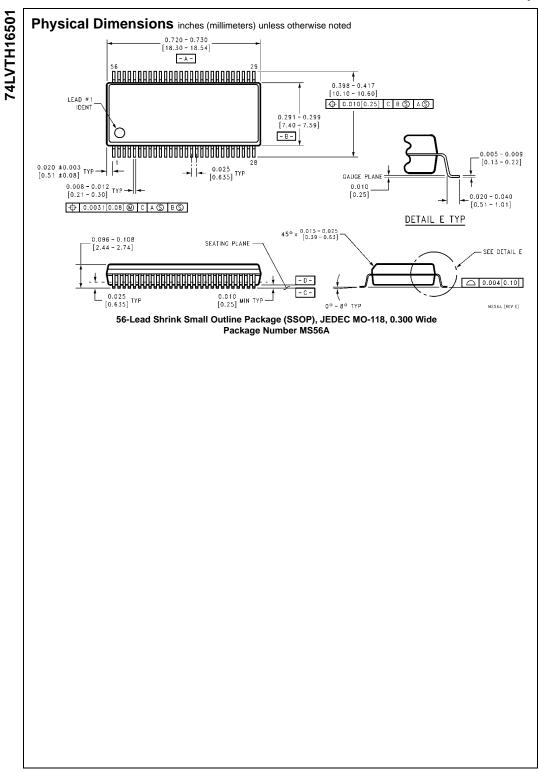
3

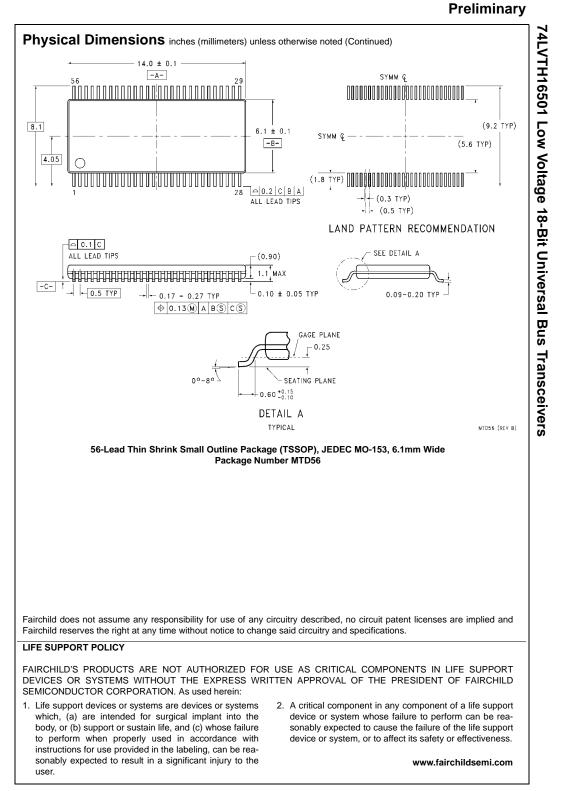
74LVTH16501

Cumhal	Devenueter		Vcc	T _A = -40°C	to +85°C	Units	Conditions
Symbol	Parameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7–3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	v	$V_O \ge V_{CC} - 0.1V$
V _{ОН}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0		V	I _{OH} = -32 mA
/ _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I(HOLD)	Bushold Input Minimum Drive	9	3.0	75		μΑ	V _I = 0.8V
				-75		μΑ	V _I = 2.0V
I(OD)	Bushold Input Over-Drive		3.0	500		μΑ	(Note 6)
	Current to Change State			-500		μΑ	(Note 7)
1	Input Current		3.6		10	μΑ	V _I = 5.5V
		Control Pins	3.6		±1	μΑ	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μΑ	$V_{I} = 0V$
					1	μΑ	$V_I = V_{CC}$
OFF	Power Off Leakage Current	•	0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
PU/PD	Power up/down 3-STATE		0-1.5V		±100	μA	V _O = 0.5V to 3.0V
	Output Current		0-1.5V		±100	μΑ	$V_I = GND$ or V_{CC}
OZL	3-STATE Output Leakage Cu	rrent	3.6		-5	μA	V _O = 0.0V
OZH	3-STATE Output Leakage Cu	rrent	3.6		5	μA	V _O = 3.6V
OZH ⁺	3-STATE Output Leakage Cu	rrent	3.6		10	μA	$V_{CC} < V_O \le 5.5V$
ССН	Power Supply Current		3.6		0.19	mA	Outputs HIGH
CCL	Power Supply Current		3.6		5	mA	Outputs LOW
CCZ	Power Supply Current		3.6		0.19	mA	Outputs Disabled
ccz+	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,
							Outputs Disabled
VI _{CC}	Increase in Power Supply Cu	rrent	3.6		0.2	mA	One Input at V _{CC} – 0.6V
	(Note 8)						Other Inputs at V _{CC} or GNI

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.


Dynamic Switching Characteristics (Note 9)


Symbol	Parameter	v _{cc}		$T_{A}=25^{\circ}C$		Units	Conditions
0,	- diamotor	(V)	Min	Тур	Мах	00	$\mathbf{C}_{\mathbf{L}}$ = 50 pF, $\mathbf{R}_{\mathbf{L}}$ = 500 Ω
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)
VOLV	Quiet Output Minimum Dynamic VOI	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

			$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to $+\textbf{85}^{\circ}\textbf{C},~\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}~\Omega$				
Symbol	Par	ameter	V _{CC} = 3	$.3\pm0.3V$	V _{CC} = 2.7V		Units
			Min	Max	Min	Max	-
ЛАХ			150		150		MHz
LH	Propagation Delay		1.3	3.7	1.3	4.0	
ΉL	Data to Outputs		1.3	3.7	1.3	4.0	ns
'LH	Propagation Delay		1.5	5.1	1.5	5.7	
ΉL	LEBA or LEAB to B or A		1.5	5.1	1.5	5.7	ns
ĽΗ	Propagation Delay		1.3	5.1	1.3	5.7	ns
ΉL	CLKBA or CLKAB to B or A		1.3	5.1	1.3	5.7	113
PZH	Output Enable Time		1.3	4.8	1.3	5.5	ns
PZL			1.3	4.8	1.3	5.5	113
νнz	Output Disable Time		1.7	5.8	1.7	6.3	ns
LZ			1.7	5.8	1.7	6.3	
	Setup Time	A before CLKAB	2.1		2.4		
		B before CLKBA	2.1		2.4		ns
		A or B before LE, CLK HIGH	2.4		1.6		
	1.1.1.77	A or B before LE, CLK LOW	1.4		0.5		
	Hold Time	A or B after CLK	1.0		0.0		ns
	Dules Width	A or B after LE	1.7		1.7		
V	Pulse Width	LE HIGH CLK HIGH or LOW	3.3		3.3		ns
	Output to Output Skow (Noto 11		3.3	1.0	3.3	1.0	
SLH SHL	Output to Output Skew (Note 11)		1.0 1.0		1.0 1.0	ns
			litions		Typical		Units
-	Parameter		litions		Typical		Units
Symbol N /0 ote 12: Ca	Input Capacitance Input/Output Capacitance	Cond V _{CC} = 0V, V ₁ = 0V or V V _{CC} = 3.0V, V ₀ = 0V o f = 1 MHz, per MIL-STD-883, Method 30	'cc r V _{CC}		Typical 4 8		Dnits pF pF

