

May 2000 Revised May 2000

74LVTH16835

Low Voltage 18-Bit Universal Bus Driver with 3-STATE Outputs (Preliminary)

General Description

The LVTH16835 consists of 18-bit universal bus drivers which combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. Data flow from A to Y is controlled by the output-enable $(\overline{\text{OE}})$ input. This device operates in the transparent mode when the latch-enable (LE) input is HIGH. The A data is latched if the clock (CLK) input is held at a HIGH or LOW logic level. If LE is LOW, the A-bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of the CLK. When $\overline{\text{OE}}$ is HIGH, the outputs are in the high-impedance state.

The LVTH16835 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

The bus driver is designed for low voltage (3.3V) $V_{\rm CC}$ applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH16835 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVTH16835MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LVTH16835MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

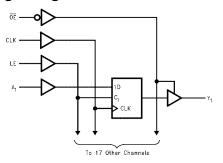
1		١ /		1
NC -	1	\bigcirc	56	-GND
NC -	2		55	-nc
Υ1-	3		54	— A ₁
GND -	4		53	— GND
Υ2-	5		52	- A ₂
Υ3 —	6		51	— A ₃
v _{cc} –	7		50	-v _{cc}
Y ₄ —	8		49	— A₄
Y ₅ —	9		48	— A ₅
Y ₆ —	10		47	— A ₆
GND -	11		46	— GND
Y ₇ —	12		45	— A ₇
Υ ₈ —	13		44	— A ₈
Y ₉ —	14		43	— Ag
Y ₁₀ -	15		42	— A ₁₀
Y ₁₁ —	16		4 1	— A _{1 1}
Y ₁₂ —	17		40	— A ₁₂
GND —	18		39	— GND
Y ₁₃ —	19		38	— A ₁₃
Y ₁₄ -	20		37	— A _{1.4}
Y ₁₅ —	21		36	— A ₁₅
v _{cc} —	22		35	−v _{cc}
Y ₁₆ —	23		34	— A ₁₆
Y ₁₇ —	24		33	— A ₁₇
GND -	25		32	— GND
Y ₁₈	26		31	— A ₁₈
ÖE —	27		30	— CLK
LE —	28		29	— GND
				ı

Pin Descriptions

Pin Names		Description
	A ₁ -A ₁₈	Data Register Inputs
	A ₁ -A ₁₈ Y ₁ -Y ₁₈	3-STATE Outputs
	CLK	Clock Pulse Input
	OE	Output Enable Input
	LE	Latch Enable Input

Truth Table

	Inputs						
OE	LE	CLK	Α	Y			
Н	Χ	Х	Χ	Z			
L	Н	Χ	L	L			
L	Н	Χ	Н	Н			
L	L	\uparrow	L	L			
L	L	\uparrow	Н	Н			
L	L	Н	Χ	Y ₀ (Note 1)			
L	L	L	Χ	Y ₀ (Note 2)			


L = LOW Voltage Level Z = High Impedance

H = HIGH Voltage Level
X = Immaterial
↑ = HIGH-to-LOW Clock Transition

Note 1: Output level before the indicated steady-state input conditions were established, provided that CLK was HIGH before LE went LOW.

Note 2: Output level before the indicated steady-state input conditions were established.

Logic Diagram

Absolute Maximum Ratings(Note 3)							
Symbol	Parameter	Value	Conditions	Units			
V _{CC}	Supply Voltage	-0.5 to +4.6		V			
V _I	DC Input Voltage	-0.5 to +7.0		V			
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V			
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	V			
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA			
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA			
Io	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA			
		128	V _O > V _{CC} Output at LOW State	ША			
I _{CC}	DC Supply Current per Supply Pin	±64		mA			
I _{GND}	DC Ground Current per Ground Pin	±128		mA			
T _{STG}	Storage Temperature	-65 to +150		°C			

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
V _I	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 4: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics T $_A = -40^{\circ}C$ to $+85^{\circ}C$ v_{cc} Symbol Units Conditions (V) Max V_{IK} Input Clamp Diode Voltage 2.7 -1.2 $I_1 = -18 \text{ mA}$ V_O ≤ 0.1V or Input HIGH Voltage 2.7-3.6 2.0 V_{IL} Input LOW Voltage 2.7-3.6 8.0 $V_O \ge V_{CC} - 0.1V$ Output HIGH Voltage V_{CC} - 0.2 $I_{OH} = -100 \mu A$ 2.7-3.6 V_{OH} $I_{OH} = -8 \text{ mA}$ $\overline{I_{OH}} = -32 \text{ mA}$ 3.0 2.0 ٧ V_{OL} Output LOW Voltage 2.7 0.2 V $I_{OL} = 100 \mu A$ I_{OL} = 24 mA 2.7 0.5 3.0 0.4 I_{OL} = 16 mA I_{OL} = 32 mA 3.0 0.5 3.0 0.55 V $I_{OL} = 64 \text{ mA}$ Bushold Input Minimum Drive μΑ $V_{I} = 0.8V$ $I_{I(HOLD)}$ -75 $V_{I} = 2.0V$ μΑ Bushold Input Over-Drive Current to Change State 3.0 500 μΑ (Note 5) I_{I(OD)} -500 μΑ (Note 6) I Input Current 3.6 10 μΑ V_I = 5.5\ Control Pins 3.6 ±1 μΑ $V_{I}\,{=}\,\,0V$ or V_{CC} Data Pins -5 $V_I = 0V$ μΑ $V_I = V_{CC}$ I_{OFF} Power Off Leakage Current 0 ±100 μΑ $0V \le V_I \text{ or } V_O \le 5.5V$ Power up/down 3-STATE $V_0 = 0.5V \text{ to } 3.0V$ I_{PU/PD} 0-1.5V ±100 μΑ Output Current $V_I = GND \text{ or } V_{CC}$ 3-STATE Output Leakage Current V_O = 0.5V 3.6 -5 μΑ I_{OZL} I_{OZH} 3-STATE Output Leakage Current 3.6 5 μΑ $V_0 = 3.0V$ $V_{CC} < V_O \le 5.5V$ 3-STATE Output Leakage Current 3.6 10 μΑ I_{OZH}+ Outputs HIGH I_{CCH} Power Supply Current 3.6 0.19 mΑ Power Supply Current 3.6 mΑ Outputs LOW I_{CCL} Outputs Disabled Power Supply Current 0.19 I_{CCZ} 36 mΑ Power Supply Current 3.6 0.19 $V_{CC} \le V_O \le 5.5V$ I_{CCZ}+ Outputs Disabled ΔI_{CC} Increase in Power Supply Current One Input at V_{CC} - 0.6V Other Inputs at V_{CC} or GND

Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

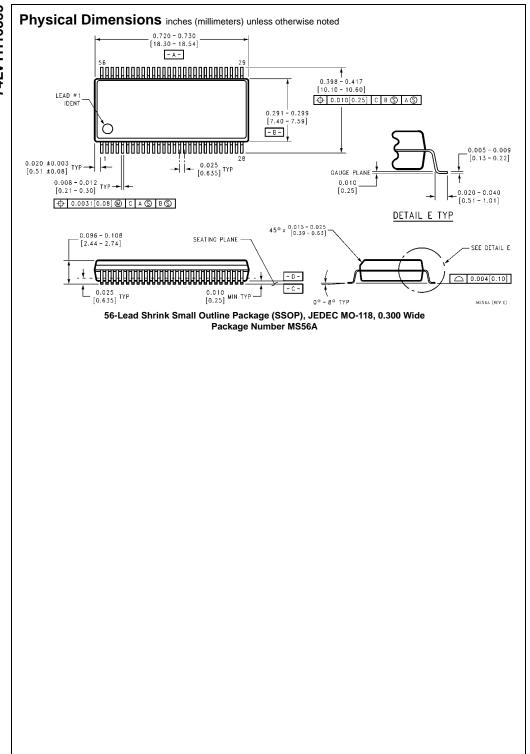
Dynamic Switching Characteristics (Note 8)

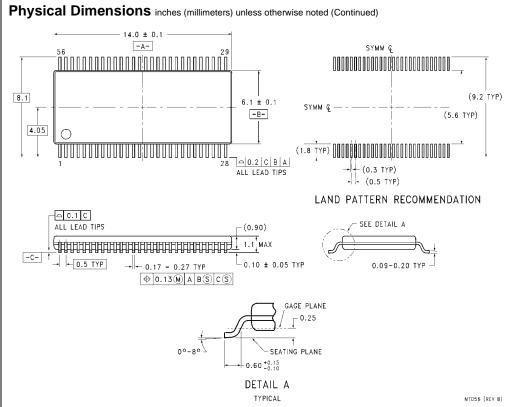
Symbol	Parameter	v _{cc}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Units	Conditions	
Symbol		(V)			Units	$\textbf{C}_{\textbf{L}} = \textbf{50} \; \textbf{pF}, \textbf{R}_{\textbf{L}} = \textbf{500} \Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)

Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics


	Parameter			$T_A = -40$ °C to +85 °C, $C_L = 50$ pF, $R_L = 500$ Ω				
Symbol				.3 ± 0.3V	V _{CC} = 2.7V		Units	
			Min	Max	Min	Max		
f _{MAX}					150		MHz	
t _{PLH}	Propagation Delay		1.3	3.7	1.3	4.0	ns	
t_{PHL}	A to Y		1.3	3.7	1.3	4.0	113	
t _{PLH}	Propagation Delay		1.5	5.1	1.5	5.7	ns	
t_{PHL}	LE to Y			5.1	1.5	5.7	115	
t _{PLH}	Propagation Delay		1.5	5.1	1.5	5.7	ns	
t_{PHL}	CLK to Y			5.1	1.5	5.7	115	
t _{PZH}	Output Enable Time		1.3	4.6	1.3	5.5	ns	
t_{PZL}			1.3	4.6	1.3	5.5	115	
t _{PHZ}	Output Disable Time		1.7	5.8	1.7	6.3	ns	
t_{PLZ}			1.7	5.8	1.7	6.3	113	
t _S	Setup Time	A before CLK	2.1		2.4			
		A before LE, CLK HIGH	2.3		1.5		ns	
		A before LE, CLK LOW	1.5		0.5			
t _H	Hold Time	A after CLK	1.0		0.0		ns	
		A after LE	0.8		0.8		115	
t _W	Pulse Duration	LE HIGH	3.3		3.3		ns	
	CLK HIGH or LOW		3.3		3.3		113	
t _{OSLH}	Output to Output Skew			1.0		1.0	ns	
toshl	(Note 10)			1.0		1.0	110	


Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 11)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 11: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

7

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com