

March 1999 Revised March 1999

74LVT574 • 74LVTH574 Low Voltage Octal D-Type Flip-Flop with 3-STATE Outputs

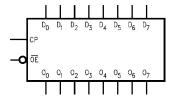
General Description

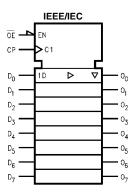
The LVT574 and LVTH574 are high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flip-flops.

The LVTH574 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These octal flip-flops are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT574 and LVTH574 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features


- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pullup resistors to hold unused inputs (74LVTH574), also available without bushold feature (74LVT574).
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 574
- Latch-up performance exceeds 500 mA


Ordering Code:

Order Number	Package Number	Package Description
74LVT574WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, .300" Wide
74LVT574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVT574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVT574MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH574WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, .300" Wide
74LVTH574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVTH574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH574MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

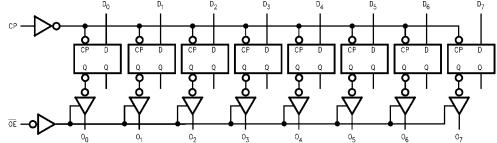
Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input
ŌE	3-STATE Output Enable Input
O ₀ -O ₇	3-STATE Outputs

Truth Table

	Outputs		
D _n	СР	OE	On
Н	\	L	Н
L	~	L	L
X	L	L	O _o
X	Х	Н	Z


- H = HIGH Voltage Leve
- L = LOW Voltage Level X = Immaterial
- Z = High Impedance
- = LOW-to-HIGH TransitionO₀ = Previous O₀ before HIGH to LOW of CP

Functional Description

The LVT574 and LVTH574 consist of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH

Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1) Parameter Value Units Symbol Conditions Supply Voltage ٧ -0.5 to +4.6 V_{CC} DC Input Voltage -0.5 to +7.0 ٧ V_{I} DC Output Voltage -0.5 to +7.0 Output in 3-STATE Vo ٧ -0.5 to +7.0 Output in High or Low State (Note 2) DC Input Diode Current -50 V_I < GND mΑ I_{IK} DC Output Diode Current -50 V_O < GND mΑ I_{OK} DC Output Current 64 V_O > V_{CC} Output at High State Ιo $\mathsf{m}\mathsf{A}$ V_O > V_{CC} Output at Low State 128 DC Supply Current per Supply Pin ±64 I_{CC} mΑ DC Ground Current per Ground Pin ±128 mΑ I_{GND} Storage Temperature -65 to +150 °C $\mathsf{T}_{\mathsf{STG}}$

Recommended Operating Conditions

Symbol	Parameter		Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: Io Absolute Maximum Rating must be observed.

DC Electrical Characteristics

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				
Symbol	Param	eter	V _{CC} (V)	Min	Typ (Note 3)	Max	Units	Conditions
V _{IK}	Input Clamp Diode	/oltage	2.7			-1.2	V	$I_I = -18 \text{ mA}$
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0			V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6			0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltag	е	2.7-3.6	V _{CC} - 0.2				$I_{OH} = -100 \mu A$
			2.7	2.4			V	$I_{OH} = -8 \text{ mA}$
			3.0	2.0				I _{OH} = -32 mA
V _{OL}	Output LOW Voltage	Э	2.7			0.2		I _{OL} = 100 μA
			2.7			0.5	Ī	I _{OL} = 24 mA
			3.0			0.4	V	I _{OL} = 16 mA
			3.0			0.5		I _{OL} = 32 mA
			3.0			0.55	Ī	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minim	num Drive	3.0	75			μΑ	V _I = 0.8V
(Note 4)				-75				V _I = 2.0V
I _{I(OD)}	Bushold Input Over-		3.0	500			μА	(Note 5)
(Note 4)	Current to Change S	State		-500			μΛ	(Note 6)
I	Input Current		3.6			10		V _I = 5.5V
		Control Pins	3.6			±1	μА	$V_I = 0V$ or V_{CC}
		Data Pins	3.6			-5	μΛ	$V_I = 0V$
						1		$V_I = V_{CC}$
I _{OFF}	Power Off Leakage	Power Off Leakage Current				±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power up/down 3-S	TATE	0-1.5V			±100	μΑ	V _O = 0.5V to 3.0V
	Output Current							$V_I = GND \text{ or } V_{CC}$
l _{OZL}	3-STATE Output Lea	akage Current	3.6			-5	μА	$V_0 = 0.5V$
l _{ozh}	3-STATE Output Lea	akage Current	3.6			5	μΑ	$V_0 = 3.0V$

DC Electrical Characteristics (Continued)

		. v	T _A = -40°C to +85°C				
Symbol	Parameter	V _{CC} (V)	Min	Typ (Note 3)	Max	Units	Conditions
I _{OZH} +	3-STATE Output Leakage Current	3.6			10	μΑ	$V_{CC} < V_O \le 5.5V$
Гссн	Power Supply Current	3.6			0.19	mA	Outputs High
I _{CCL}	Power Supply Current	3.6			5	mA	Outputs Low
I _{CCZ}	Power Supply Current	3.6			0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current	3.6			0.19	mA	$V_{CC} \le V_O \le 5.5V$,
							Outputs Disabled
ΔI_{CC}	Increase in Power Supply Current	3.6			0.2	mA	One Input at V _{CC} – 0.6V
	(Note 7)						Other Inputs at V _{CC} or GND

Note 3: All typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C.

Note 4: Applies to bushold versions only (74LVTH574).

Note 5: An external driver must source at least the specified current to switch from LOW to HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH to LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 8)

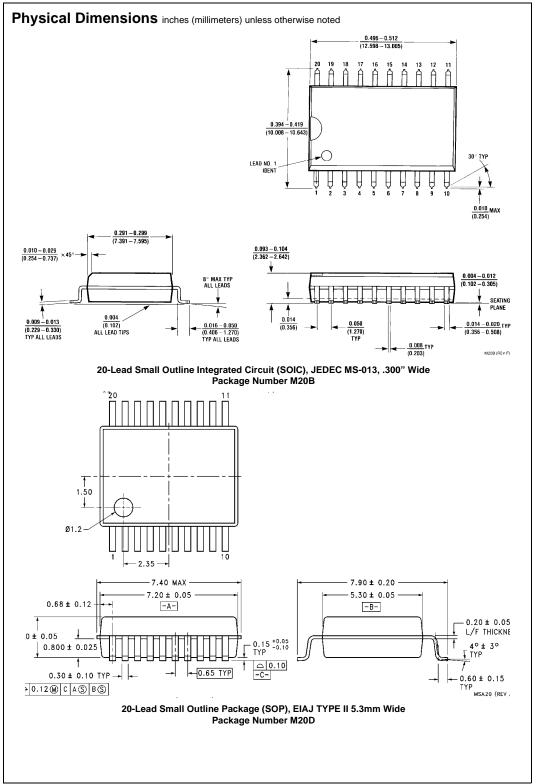
Symbol		V _{CC} (V)	T _A = 25°C				Conditions
	Parameter		Min	Тур	Max	Units	$C_L = 50 \text{ pF},$ $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)

Note 8: Characterized in SOIC package. Guaranteed parameter, but not tested.

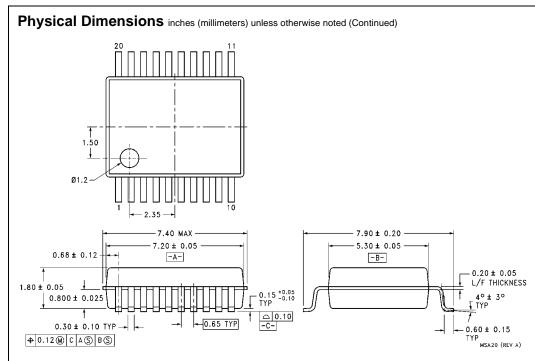
Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

	Parameter						
Symbol		,	V _{CC} = 2.7V		Units		
		Min	Typ (Note 10)	Max	Min	Max	<u> </u>
f _{MAX}	Maximum Clock Frequency	150			150		MHz
t _{PHL}	Propagation Delay	1.8		4.6	1.8	5.3	ns
t _{PLH}	CP to O _n	1.8		4.5	1.8	5.3	115
t _{PZL}	Output Enable Time	1.5		5.2	1.5	6.1	ns
t _{PZH}		1.5		4.8	1.5	5.9	115
t _{PLZ}	Output Disable Time	2.0		4.4	2.0	4.4	
t _{PHZ}		2.0		4.8	2.0	5.1	ns
t _S	Setup Time	2.0			2.4		ns
t _H	Hold Time	0.3			0.0		ns
t _W	Pulse Width	3.3			3.3		ns
toshl	Output to Output Skew (Note 11)			1.0		1.0	
toslh				1.0		1.0	ns


Note 10: All typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).


Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	6	pF

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 6.5±0.1 -A--0.20 20 7. 24 4.16 6,4 4.4±0.1 -B-32 PIN #1 IDENT. LAND PATTERN RECOMMENDATION O.1 C ALL LEAD TIPS SEE DETAIL A -0.90+0.15 0.09-0.20 0.1±0.05 أ 0.65 -12.00° R0.09mir GAGE PLANE DIMENSIONS ARE IN MILLIMETERS 0.25 SEATING PLANE NOTES: A. CONFORMS TO JEDEC REGISTRATION MID-153, VARIATION AC, REF NOTE 6, DATE $7/93.\,$ -0.6±0.1--R0.09mln B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS. DETAIL A D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com