FAIRCHILD

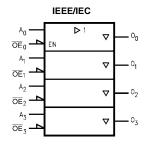
SEMICONDUCTOR

74LVX125 Low Voltage Quad Buffer with 3-STATE Outputs

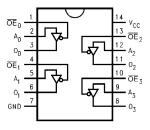
General Description

Features

- Input voltage level translation from 5V to 3V
- The LVX125 contains four independent non-inverting buffers with 3-STATE outputs. The inputs tolerate voltages up ■ Ideal for low power/low noise 3.3V applications to 7V allowing the interface of 5V systems to 3V systems.
 - Guaranteed simultaneous switching noise level and dynamic threshold performance


February 1994

Revised March 1999


Ordering Code:

Order Number	Package Number	Package Description					
74LVX125M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow					
74LVX125SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74LVX125MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.							

Logic Symbol

Connection Diagram

Truth Table

Pin Descriptions

Pin Names	Description				
A _n	Inputs				
OEn	Output Enable Inputs				
O _n	Outputs				

Inp	uts	Output		
OEn	A _n	0 _n		
L	L	L		
L	н	н		
н	Х	Z		

H = HIGH Voltage Level L = LOW Voltage Level

Z = High Impedance X = Immaterial

DS012007.prf © 1999 Fairchild Semiconductor Corporation

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current	-0.5V to +7.0V
$(I_{IK}) V_{I} = -0.5 V$	–20 mA
DC Input Voltage (VI)	-0.5V to +7.0V
DC Output Diode Current (I _{OK})	
$V_{O} = 0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Source/Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	180 mW

DC Electrical Characteristics

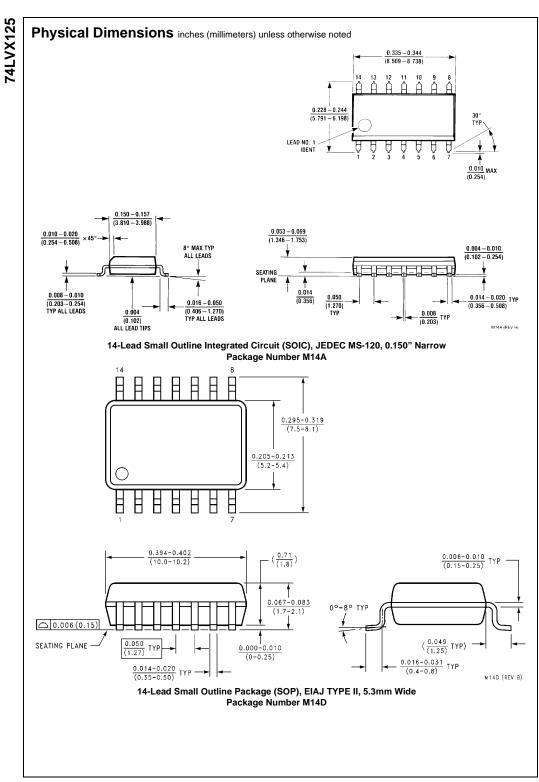
Recommended Operating Conditions (Note 2)

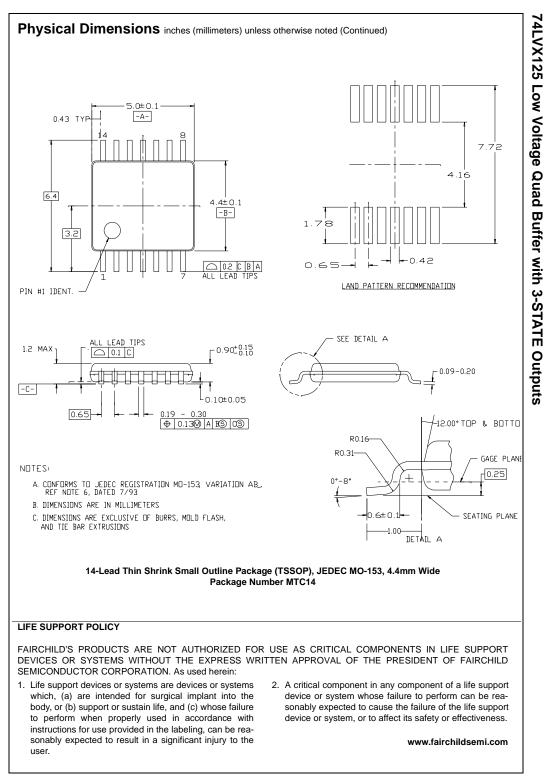
Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

$T_A = -40^{\circ}C$ to $+85^{\circ}C$ T_A = 25°C V_{CC} (V) Symbol Parameter Units Conditions Min Тур Max Min Max HIGH Level V_{IH} 20 1.5 15 Input Voltage 3.0 2.0 2.0 V 3.6 2.4 2.4 VIL LOW Level 2.0 0.5 0.5 V Input Voltage 3.0 0.8 0.8 3.6 0.8 0.8 I_{OH} = -50 μA HIGH Level V_{OH} 2.0 1.9 2.0 1.9 $V_{IN} = V_{IL}$ or v Output Voltage 3.0 2.9 3.0 2.9 V_{IH} I_{OH} = -50 μA $I_{OH} = -4 \text{ mA}$ 3.0 2.58 2.48 I_{OL} = 50 μA LOW Level 0.1 V_{OL} 2.0 0.0 0.1 $V_{IN} = V_{IL}$ or Output Voltage 0.1 v V_{IH} $I_{OL} = 50 \ \mu A$ 3.0 0.0 0.1 $I_{OL} = 4 \text{ mA}$ 3.0 0.36 0.44 3-STATE Output 3.6 ±0.25 ±2.5 I_{OZ} μΑ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC}$ or GND Off-State Current Input Leakage 3.6 ±0.1 ±1.0 μΑ $V_{IN} = 5.5V \text{ or } GND$ I_{IN} Current Quiescent Supply 3.6 4.0 40.0 μΑ $V_{\text{IN}} = V_{\text{CC}} \text{ or } \text{GND}$ I_{CC} Current


(V) Typ Limit Imit	Symbol	Parameter	v _{cc}	$T_A = 25^{\circ}C$		Units	C _L (pF)
OLV Quiet Output Minimum Dynamic V _{OL} 3.3 -0.3 -0.8 V 50 /HD Minimum HIGH Level Dynamic Input Voltage 3.3 2.0 V 50 /LD Maximum LOW Level Dynamic Input Voltage 3.3 0.8 V 50	Gymbol	i arameter	(V)	Тур	Limit	Onita	0L (bi)
Minimum HIGH Level Dynamic Input Voltage 3.3 2.0 V 50 ILD Maximum LOW Level Dynamic Input Voltage 3.3 0.8 V 50	OLP	Quiet Output Maximum Dynamic V _{OL}	3.3	0.3	0.8	V	50
ILD Maximum LOW Level Dynamic Input Voltage 3.3 0.8 V 50	/ _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.3	-0.8	V	50
	/ _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50
Note 3: Input t _r = t _f = 3 ns	/ _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50


Nai Ch riati 4-

AC Electrical Characteristics

74LVX125

	V_{CC} $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$				to +85°C						
Symbol	Parameter	V _{CC} (V)	Min	T _A = +23 C	Мах	Min	Max	Units		Conditio	ns
t _{PLH}	Propagation Delay Time	2.7		5.8	10.1	1.0	13.5		C _L =	15 pF	
t _{PHL}	Data to Output			8.3	13.6	1.0	17.0		$C_L =$	50 pF	
		3.3 ± 0.3		4.4	6.2	1.0	8.5	ns	$C_L =$	15 pF	
				6.9	9.7	1.0	12.0		$C_L =$	50 pF	
t _{PZH}	Output Enable Time	2.7		5.3	9.3	1.0	12.5		$C_L =$	15 pF, R _L =	1 kΩ
t _{PZL}				7.8	12.8	1.0	16.0		$C_L =$	50 pF, R _L =	1 kΩ
		3.3 ± 0.3		4.0	5.6	1.0	7.5	ns	$C_L =$	15 pF, R _L =	1 kΩ
				6.5	9.1	1.0	11.0		$C_L =$	50 pF, R _L =	1 kΩ
t _{PHZ}	Output Disable	2.7		10.0	15.7	1.0	19.0	00	$C_L =$	50 pF, R _L =	1 kΩ
t _{PLZ}	Time	3.3 ± 0.3		8.3	11.2	1.0	13.0	ns	$C_L = 50 \text{ pF}, R_L = 1 \text{ ks}$		1 kΩ
tOSHL	Output to Output	2.7			1.5		1.5	00	C _L = 50 pF		
t _{OSLH}	Skew (Note 4)	3.3			1.5		1.5	ns			
Capacitance Symbol Parameter					Mir	T _A = 2				C to +85°C	Units
C	Input Capacitance				IVIII	n Typ 4.0			lin	Max 10	pF
C _{IN} C _{PD}	Power Dissipation					4.0				10	pr pF
Орр	Capacitance (Note 5)					14					рі
Note 5: C	PD is defined as the value of the	internal equival	ent canaci	tance which is	calculated	from the one	rating curren	t consum	ntion w	ithout load	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.