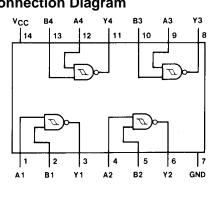
FAIRCHILD

74LVX132 Low Voltage Quad 2-Input NAND Schmitt Trigger

General Description

Features


- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

FAIRCH SEMICOND 74LVX13		l 2-Input N	October 1996 Revised March 1999 AND Schmitt Trigger
General De The LVX132 con Gates. The pin co the LVX00 but the itive-going and ne capable of transfo sharply defined,	escription tains four 2-input N/ infiguration and func inputs have hystere gative-going input t prming slowly chang	AND Schmitt Trigger tion are the same as sis between the pos- rresholds, which are ing input signals into nals, thus providing	AND Schmitt Trigger The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems. Features Input voltage level translation from 5V to 3V Ideal for low power/low noise 3.3V applications Guaranteed simultaneous switching noise level and dynamic threshold performance
Ordering C			
Order Number	Package Number		Package Description
74LVX132M	M14A		Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
74LVX132SJ	M14D		Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX132MTC	MTC14	14-Lead Thin Shrink S by appending suffix letter "X"	mall Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Logic Diag		., .,	Package (SOP), EIAJ TYPE II, 5.3mm Wide mall Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide to the ordering code. Connection Diagram V _{CC} B4 A4 Y4 B3 A3 Y3 14 13 12 11 10 9 8

Logic Diagram ¥2 Y = AB (11) Y4 B4 (13)

Connection Diagram

Pin Descriptions

Pin Names	Descriptions
A _n , B _n	Inputs
Y _n	Outputs

© 1999 Fairchild Semiconductor Corporation DS012159.prf www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
DC Input Voltage (VI)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5V$ to V_{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$:	$T_A = -40^\circ$	C to +85°C	Units	Conditions	
Gymbol	rarameter	•	Min	Тур	Max	Min	Max	onna	Conditiona	
V _t +	Positive Threshold	3.0			2.2		2.2	V		
V _t -	Negative Threshold	3.0	0.9			0.9		V		
V _H	Hysteresis	3.0	0.3		1.2	0.3	1.2	V		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9				
	Output Voltage	3.0	2.9	3.0		2.9		V	$I_{OH} = -50 \ \mu A$	
		3.0	2.58			2.48			$I_{OH} = -4 \text{ mA}$	
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL} \text{ or } V_{IH} I_{OL} = 50 \ \mu\text{A}$	
	Output Voltage	3.0		0.0	0.1		0.1	V	$I_{OL} = 50 \ \mu A$	
		3.0			0.36		0.44			
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	3.6			2.0		20	μA	$V_{IN} = V_{CC}$ or GND	

Noise Characteristics (Note 3)

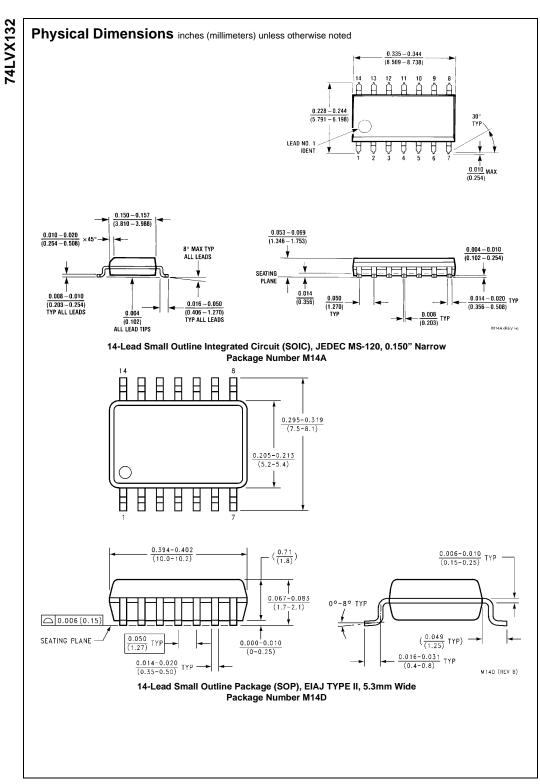
Symbol	Parameter	V _{CC} (V)	T _A =	25°C	Units	C ₁ (pF)	
	Falameter		Тур	Limit		0 ₂ (pi)	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.3	0.5	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.3	-0.5	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	
Note 3: In	putt - t - 3 pc						

Note 3: Input $t_r = t_f = 3 \text{ ns}$

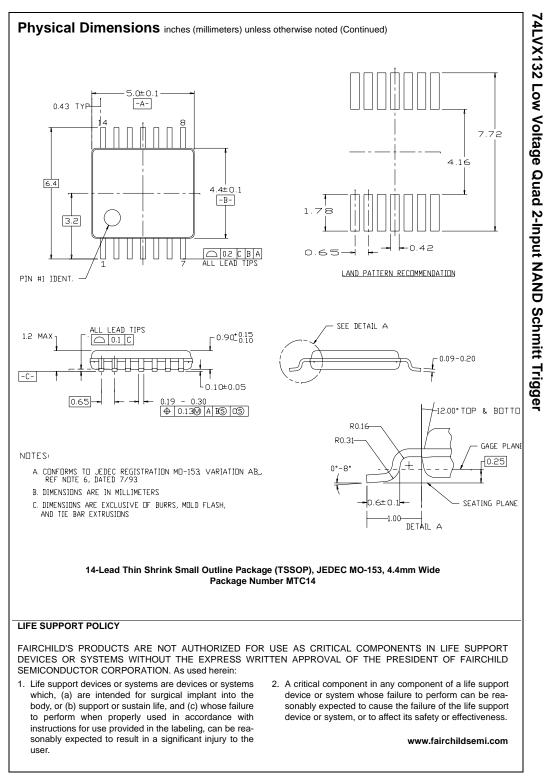
AC Electrical Characteristics

7
4
2
\mathbf{x}
1

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^\circ$	C to +85°C	Units	C _L (pF)	
		(V)	Min	Тур	Max	Min	Max	Units	C[(pr)
t _{PLH}	Propagation	2.7		7.0	11.5	1.0	13.0		15
t _{PHL}	Delay Time			10.5	16.0	1.0	18.7		50
		3.3 ± 0.3		6.1	10.6	1.0	12.5	ns	15
				9.0	15.4	1.0	17.5		50
t _{OSLH}	Output to Output	2.7			1.5		1.5	ns	50
t _{OSHL}	Skew (Note 4)	3.3			1.5		1.5	115	


 $\textbf{Note 4:} \text{ Parameter guaranteed by design. } t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \ t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Capacitance


				Units	
Min	Тур	Max	Min	Max	onita
	4	10		10	pF
	18				pF
		4 18	4 10 18	4 10 18 18	4 10 10

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{6 \text{ (per Gate)}}$

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.