FAIRCHILD

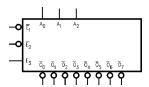
SEMICONDUCTOR

74LVX138 Low Voltage 1-of-8 Decoder/Demultiplexer

General Description

The LVX138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three LVX138 devices or a 1-of-32 decoder using four LVX138 devices and one inverter. June 1993 Revised March 1999

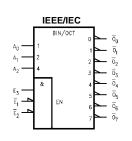
Features


- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

Order Number	Package Number	Package Description
74LVX138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVX138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX138MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also available	in Tape and Reel Specifi	by appending suffix latter "X" to the ordering code

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Logic Symbols

Connection Diagram)
A ₀ 1	16
A ₁ - 2	15
A2 - 3	14
E1 - 4	13

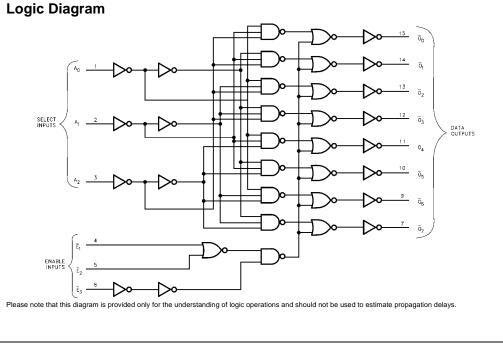
Pin Descriptions

Pin Names Description A0-A2 Address Inputs

A ₀ -A ₂	Address Inputs
$\overline{E_1 - E_2}$	Enable Inputs
E ₃	Enable Input
$\overline{O}_0 - \overline{O}_7$	Outputs

Functional Description

The LVX138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A₀, A₁, A₂) and, when enabled, provides eight mutually exclusive active-LOW outputs ($\overline{O}_0 - \overline{O}_7$). The LVX138 features three Enable inputs, two active-LOW ($\overline{E}_1, \overline{E}_2$) and one active-HIGH (E₃).


All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH.

The LVX138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active-LOW state.

Truth Table

		Inp	uts			Outputs							
Ē ₁	Ē ₂	E ₃	A ₀	A ₁	A ₂	O ₀	0 ₁	02	03	04	05	<u>0</u> 6	07
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	н	н	н	н	н	н	н	н
Х	Х	L	Х	Х	Х	н	н	н	н	н	н	н	н
L	L	Н	L	L	L	L	н	н	н	н	н	н	Н
L	L	н	н	L	L	н	L	н	н	н	н	н	н
L	L	Н	L	н	L	н	н	L	н	н	н	н	н
L	L	н	н	н	L	н	н	н	L	н	н	н	н
L	L	н	L	L	н	н	н	н	н	L	н	н	Н
L	L	н	н	L	н	н	н	н	н	н	L	н	н
L	L	н	L	н	н	н	н	н	н	н	н	L	Н
L	L	н	н	н	н	н	н	н	н	н	н	н	L

 $H = HIGH \ Voltage \ Level \\ L = LOW \ Voltage \ Level \\ X = Immaterial$

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V	
DC Input Diode Current (I _{IK})		
$V_{I} = -0.5V$	-20 mA	
DC Input Voltage (VI)	-0.5V to 7V	
DC Output Diode Current (I _{OK})		
$V_{O} = -0.5V$	–20 mA	
$V_O = V_{CC} + 0.5V$	+20 mA	
DC Output Voltage (V _O)	–0.5V to V_{CC} + 0.5V	ļ
DC Output Source		1
or Sink Current (I _O)	±25 mA	1
DC V_{CC} or Ground Current (I _{CC} or I _{GND})	±75 mA	t
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	I
Power Dissipation	180 mW	

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

C Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc		T _A = +25°C	;	T _A = -40°	C to +85°C	Units	Condit	ions
	i di dificici	•	Min	Тур	Max	Min	Max	onno	Contail	
VIH	HIGH Level	2.0	1.5			1.5				
	Input Voltage	3.0	2.0			2.0		V		
		3.6	2.4			2.4				
VIL	LOW Level	2.0			0.5		0.5			
	Input Voltage	3.0			0.8		0.8	V		
		3.6			0.8		0.8			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL} \text{ or } V_{IH}$	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V		$I_{OH} = -50 \ \mu A$
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IL} \text{ or } V_{IH}$	l _{OL} = 50 μA
	Output Voltage	3.0		0.0	0.1		0.1	V		l _{OL} = 50 μA
		3.0			0.36		0.44			I _{OL} = 4 mA
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	$V_{IN} = 5.5V \text{ or } GN$	1D
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μΑ	V _{IN} = V _{CC} or GN	D

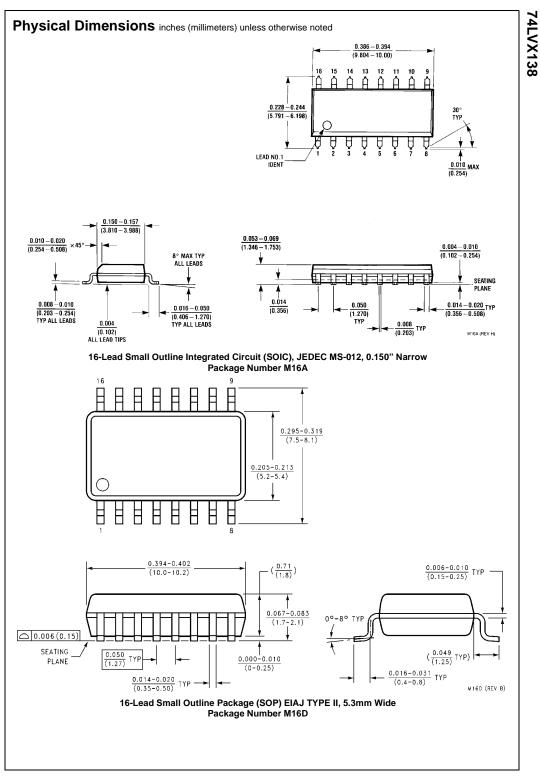
Noise Characteristics (Note 3)

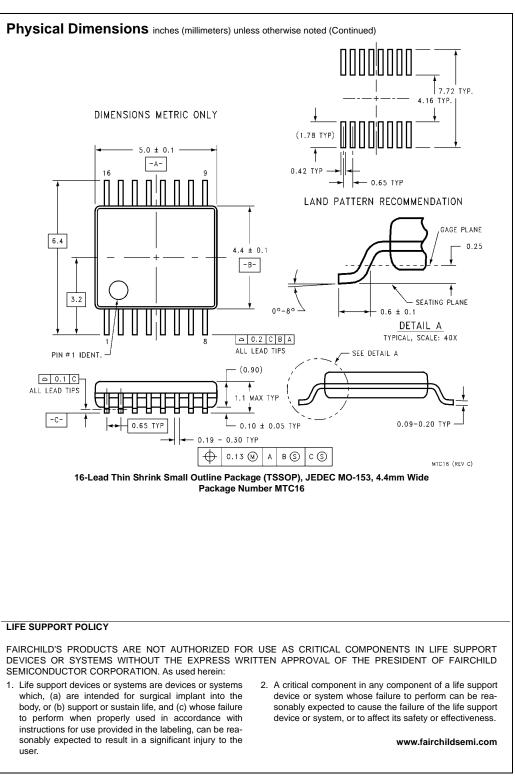
Symbol	Parameter		T _A =	25°C	Units	C ₁ (pF)
	i arameter	(V)	Тур	Limit	onna	er (b.)
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.3	0.5	V	50
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.3	-0.5	V	50
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50

3

Note 3: Input $t_r = t_f = 3 \text{ ns}$

Symbol	Parameter	V _{cc}		T _A = +25°C		$T_{A} = -40^{\circ}$	C to +85°C	Units	CL (pF)
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	CL (pr)
t _{PLH}	Propagation	2.7		7.1	13.8	1.0	16.5		15
t _{PHL}	Delay Time	-		9.6	17.3	1.0	20.0		50
	A _n to O _n	3.3 ± 0.3		5.5	8.8	1.0	10.5	ns	15
				8.0	12.3	1.0	14.0		50
t _{PLH}	Propagation	2.7		8.8	16.0	1.0	18.5		15
t _{PHL}	Delay Time			11.3	19.5	1.0	22.0		50
	\overline{E}_1 or \overline{E}_2 to \overline{O}_n	3.3 ± 0.3		6.9	10.4	1.0	11.5	ns —	15
				9.4	13.9	1.0	15.0		50
t _{PLH}	Propagation	2.7		8.7	16.3	1.0	19.5		15
t _{PHL}	Delay Time			11.2	19.8	1.0	23.0		50
	E ₃ to O _n	$\textbf{3.3}\pm\textbf{0.3}$		6.8	10.6	1.0	12.5	ns	15
				9.3	14.1	1.0	16.0		50
t _{OSHL}	Output to Output	2.7			1.5		1.5		50
tOSLH	Skew (Note 4)	3.3			1.5		1.5	ns	


Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$


Capacitance

Symbol	Parameter		T _A = +25°C		$T_A = -40^{\circ}$	Units	
	i di dificici	Min	Тур	Max	Min	Max	011110
CIN	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation Capacitance (Note 5)		34				pF

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $C_{PD} \times V_{CC} \times I_{IN} + I_{CC}$

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.