FAIRCHILD

SEMICONDUCTOR

74LVX14 Low Voltage Hex Inverter with Schmitt Trigger Input

Features

Input voltage level translation from 5V to 3V

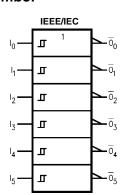
dynamic threshold performance

■ Ideal for low power/low noise 3.3V applications

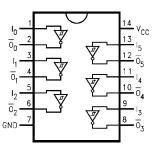
Guaranteed simultaneous switching noise level and

General Description

The LVX14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.


The LVX14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.


Ordering Code:

Order Number	Package Number	Package Description							
74LVX14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow							
74LVX14SJ	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide								
74LVX14MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide									
Devices also available	Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.								

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
I _n	Inputs
Ōn	Outputs

Input	Outpu
А	ō
L	Н

н

Truth Table

© 1999 Fairchild Semiconductor Corporation DS011603

www.fairchildsemi.com

L

March 1993 Revised December 1999

74LVX14

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{1} = -0.5V$	–20 mA
DC Input Voltage (VI)	–0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (VI)	0V to 5.5V
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc	$T_A = +25^{\circ}C$			$T_A = -40^\circ C \text{ to } +85^\circ C$		Units	Conditions		
Gymbol	rarameter	•00	Min Typ M		Max	Min	Max	Units	Conationa		
V _t +	Positive Threshold	3.0			2.2		2.2	V			
V _t -	Negative Threshold	3.0	0.9			0.9		V			
V _H	Hysteresis	3.0	0.3		1.2	0.3	1.2	V			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			I _{OH} = -50 μA		
	Output Voltage	3.0	2.9	3.0		2.9		V	$V_{IN} = V_{IL} \text{ or } V_{IH} \ \ I_{OH} = -50 \ \mu A$		
		3.0	2.58			2.48			$I_{OH} = -4 \text{ mA}$		
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		I _{OL} = 50 μA		
	Output Voltage	3.0		0.0	0.1		0.1	V	$V_{IN} = V_{IL} \text{ or } V_{IH} \ I_{OL} = 50 \ \mu\text{A}$		
		3.0			0.36		0.44		I _{OL} = 4 mA		
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	3.6			2.0		20	μΑ	$V_{IN} = V_{CC}$ or GND		

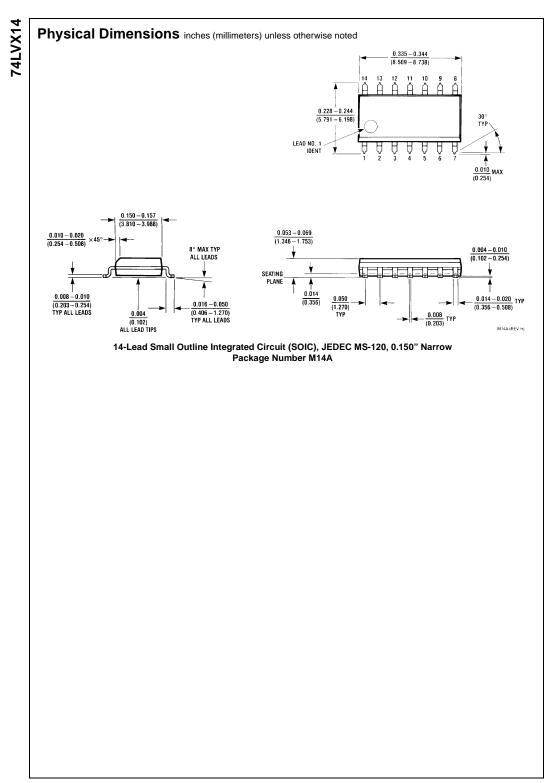
Noise Characteristics (Note 3)

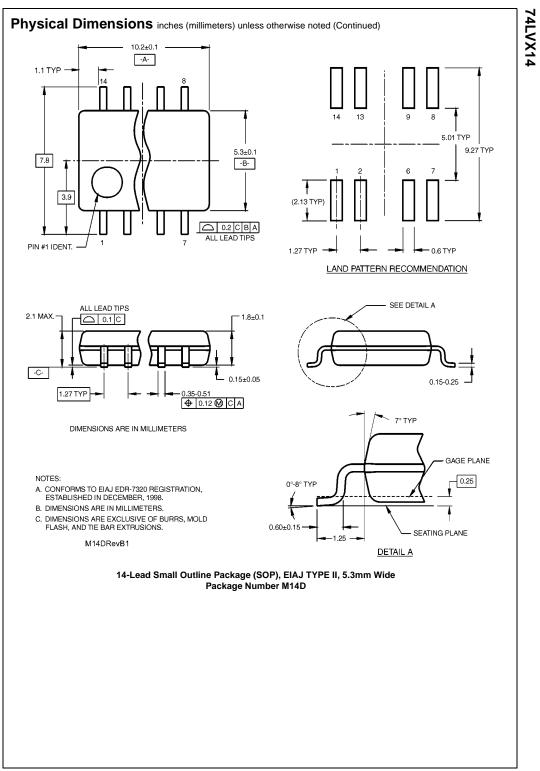
Symbol	Parameter	V _{cc}	T _A = 25°C		Units	C _L (pF)	
		(V)	Тур	Limit	onits	- [()	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.3	0.5	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.3	-0.5	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage			0.8	V	50	
Nata 2. In	n:44 4 0no						

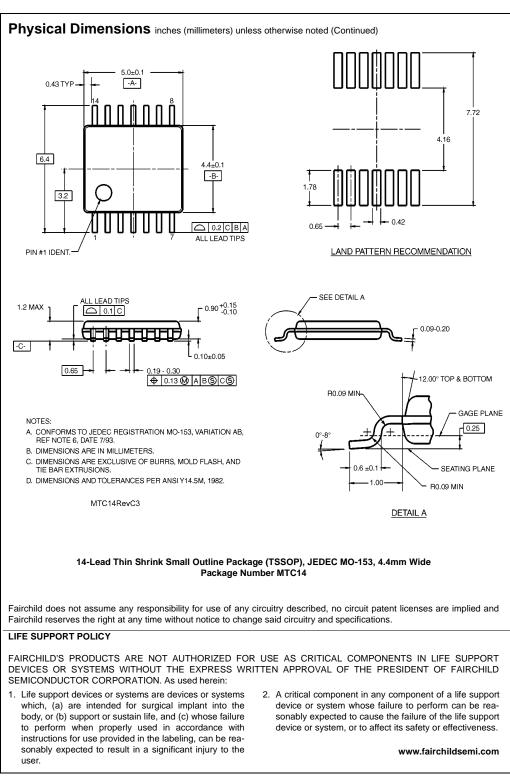
Note 3: Input $t_r = t_f = 3ns$

AC Electrical Characteristics

Cumhal	Desemator	V _{cc}		T _A = +25°C	;	$T_A = -40^\circ$	C to +85°C	Units	C _L (pF)
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	C[(pr)
t _{PLH}	Propagation	2.7		8.7	16.3	1.0	19.5		15
t _{PHL}	Delay Time	2.7		11.2	19.8	1.0	23.0		50
		22102		6.8	10.6	1.0	12.5	ns —	15
		3.3 ± 0.3		9.3	14.1	1.0	16.0		50
t _{OSLH}	Output to Output	2.7			1.5		1.5		50
OSHL	Skew (Note 4)	3.3			1.5		1.5	ns	50


Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$


Capacitance


Symbol	Parameter		T _A = +25°C		$T_A = -40^{\circ}C$	Units	
	i arameter	Min	Тур	Max	Min	Max	Units
CIN	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation		21				۶F
	Capacitance (Note 5)		21				ρr

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{6 \, (per \, Gate)}$

