FAIRCHILD

SEMICONDUCTOR

74LVX245 Low Voltage Octal Bidirectional Transceiver

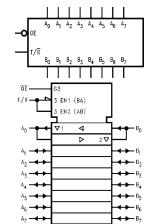
General Description

The LVX245 contains eight non-inverting bidirectional buffers and is intended for bus-oriented applications. The Transmit/Receive (T/ \overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A Ports to B Ports; Receive (active-LOW) enables data from B Ports to A Ports. The Output Enable input, when HIGH, disables both

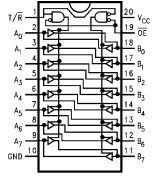
A and B Ports by placing them in a high impedance condition.

April 1993

Revised March 1999


Features

- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance


Ordering Code

Order Number	Package Number	Package Description
74LVX245M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVX245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin	Description					
Names						
OE	Output Enable Input					
T/R	Transmit/Receive Input					
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs					
B ₀ –B ₇	Side A Inputs or 3-STATE Outputs Side B Inputs or 3-STATE Outputs					

Truth Table

ts	Outputs
T/R	
L	Bus B Data to Bus A
н	Bus A Data to Bus B
х	HIGH-Z State
vel el	
	T/R L H X

© 1999 Fairchild Semiconductor Corporation DS011597.prf

74LVX245

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
DC Input Voltage T/\overline{R} , \overline{OE} (V _I)	-0.5V to 7V
DC Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Bus I/O Voltage (V _{I/O})	–0.5V to $V_{CC}^{} + 0.5V$
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage T/R, OE (VI)	0V to 5.5V
Bus I/O Voltage (V _{I/O})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

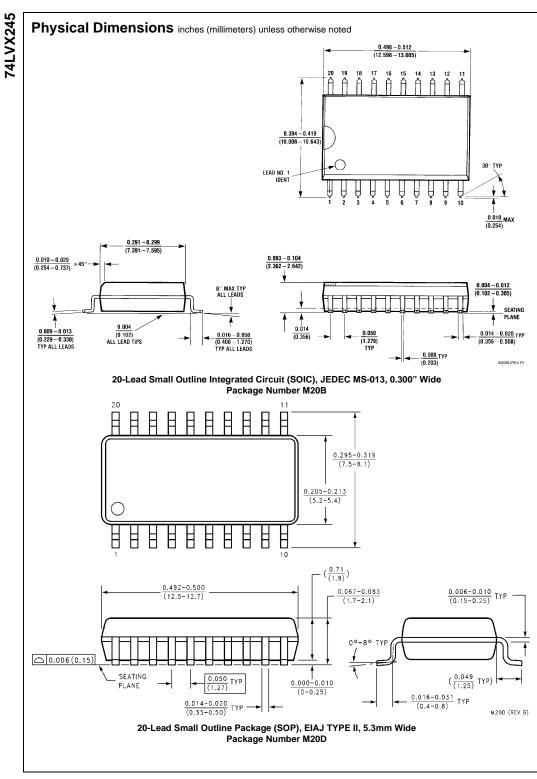
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

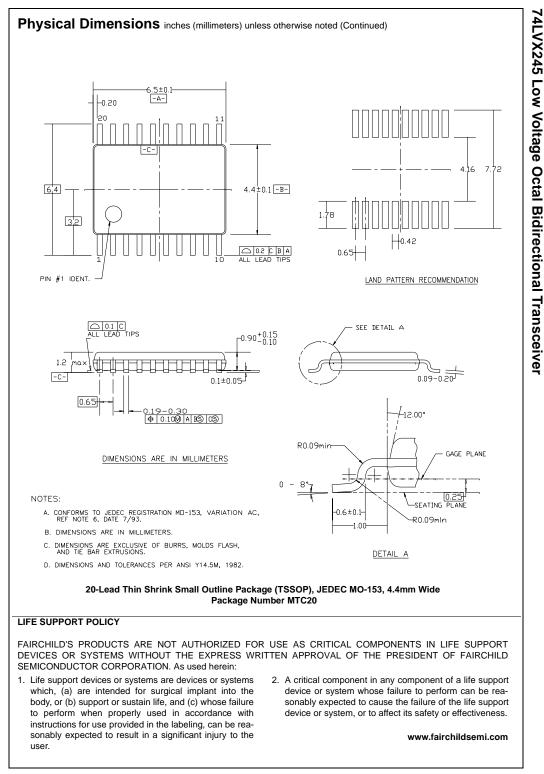
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc	T _A = +25°C		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C}$ to $+85^{\circ}\textbf{C}$		Units	Conditions		
Gymbol	rarameter	•00	Min	Тур	Max	Min	Max	onita	Cond	luona
VIH	HIGH Level	2.0	1.5			1.5				
	Input	3.0	2.0			2.0		V		
	Voltage	3.6	2.4			2.4				
VIL	LOW Level	2.0			0.5		0.5			
	Input	3.0			0.8		0.8	V		
	Voltage	3.6			0.8		0.8			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -50 μA
	Output	3.0	2.9	3.0		2.9		V		I _{OH} = -50 μA
	Voltage	3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 50 μA
	Output	3.0		0.0	0.1		0.1	V		$I_{OL} = 50 \ \mu A$
	Voltage	3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$
I _{OZ}	3-STATE	3.6			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	•
	Output								V _{OUT} = V _{CC} or G	ND
	Off-State Current									
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	$V_{IN} = 5.5V \text{ or } GN$	D
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μΑ	$V_{IN} = V_{CC} \text{ or } GN$	D

Noise Characteristics (Note 3)


Symbol	Parameter	Vcc	T _A =	25°C	Units	Conditions	
Cymbol	i di di lictori	(V)	Тур	Limit	onno	C _L (pF)	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	50	
VIHD	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	


Note 3: Input $t_r = t_f = 3 \text{ ns}$

AC Electrical Characteristics

74LVX245

Symbol	Parameter	V _{cc}		T _A = +25°C	;	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
.H	Propagation Delay Time 2.7			6.1	10.7	1.0	13.5		C _L = 15 pF
IL		-		8.6	14.2	1.0	17.0	-	C _L = 50 pF
		3.3 ± 0.3		4.7	6.8	1.0	8.0	ns	C _L = 15 pF
				7.2	10.1	1.0	11.5		$C_L = 50 \text{ pF}$
ZL	3-STATE Output	2.7		9.0	16.9	1.0	20.5		$C_{L} = 15 \text{ pF}, R_{L} = 1 \text{ ks}$
ZH	Enable Time			11.5	20.4	1.0	24.0	ns	$C_L = 50 \text{ pF}, R_L = 1 \text{ ks}$
		$\textbf{3.3}\pm\textbf{0.3}$		7.1	11.0	1.0	13.0	113	$C_L = 15 \text{ pF}, R_L = 1 \text{ kg}$
				9.6	14.5	1.0	16.5		$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ kg}$
Z	3-STATE Output	2.7		11.5	18.0	1.0	21.0	ns	$C_L = 50 \text{ pF}, R_L = 1 \text{ kg}$
HZ	Disable Time	$\textbf{3.3}\pm\textbf{0.3}$		9.6	12.8	1.0	14.5	113	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ kg}$
SLH	Output to Output Skew	2.7			1.5		1.5	ns	C _L = 50 pF (Note 4)
SHL	(Note 4)	3.3			1.5		1.5	115	
mbol	Parameter	-	Min	T _A = +25°C Typ	; Max	T _A = -40° Min	C to +85°C Max		Units
1	Input Capacitance T/R, OE			4	10	1	10		pF
0	Output Capacitance An, Bn			8					pF
D	Power Dissipation Capacitan	ce (Note 5)		21	1				pF
	Average ope	erating current o	can be obta	ined by the	equation: I _C	$CC(opr.) = \frac{CPI}{CC(opr.)}$	<u>o × V_{CC} × fµ</u> 8 (per bit)		
	Average ope	erating current o	can be obta	ined by the	equation: I _C	$CC(opr.) = \frac{Cpr}{CC(opr.)}$	<u>o × V_{CC} × f⊪</u> 8 (per bit)	<u>N + ICC</u>	
	Average ope	erating current o	can be obta	ined by the	equation: I ₍	$CC(opr.) = \frac{Cpr}{CC(opr.)}$	<u>o × V_{CC} × f⊪</u> 8 (per bit)	<u>n + Icc</u>	
	Average ope	erating current c	can be obta	ined by the	equation: I ₍	_{CC(opr.)} = <u>Cpr</u>	<mark>∋ × V_{CC} × f</mark> li 8 (per bit)	<u>n + lcc</u>	
	Average ope	erating current o	can be obta	ined by the	equation: I _C	_{CC(opr.)} = <u>Cpr</u>	<u>⊃ × V_{CC} × f_{II}</u> 8 (per bit)	<u>n + Icc</u>	
	Average ope	arating current o	can be obta	ined by the	equation: I _C	_{CC(opr.)} = <u>C_{Pl}</u>	3 (per bit)	<u>N + ICC</u>	
	Average ope	arating current o	xan be obta	ined by the	equation: I _C	_{CC(opr.)} = <u>C_{PI}</u>	<u>3</u> × V _{CC} × f _{II} 8 (per bit)	<u>v + Icc</u>	
	Average ope	erating current o	can be obta	ined by the	equation: Ic	_{CC(opr.)} = <u>Cpi</u>	<u>o × V_{CC} × f∥</u>	<u>v + Icc</u>	
	Average ope	arating current o	can be obta	ined by the	equation: I _C	_{CC(opr.)} = <u>Cpr</u>	<u>o × V_{CC} × fu</u>	N + I <u>CC</u>	
	Average ope	erating current o	can be obta	ined by the	equation: Ic	_{CC(opr.)} = <u>Cpi</u>	<u>o × V_{CC} × f∥</u>		
	Average ope	arating current o	an be obta	ined by the	equation: Ic	_{CC(opr.)} = <u>Cpr</u>	<u>o × V_{CC} × f∥</u>	N + ICC	
	Average ope	arating current o	an be obta	ined by the	equation: I _C	_{CC(opr.)} = <u>Cpr</u>	<u>o × V_{CC} × I∥</u>	N + ICC	
	Average ope	erating current o	can be obta	ined by the	equation: I _C	_{CC(opr.)} = <u>C_{PI}</u>	<u>o × V_{CC} × I∥</u>	N + ICC	
	Average ope	arating current o	an be obta	ined by the	equation: Ic	_{CC(opr.)} = <u>Cpr</u>	<u>o × V_{CC} × fu</u> 8 (per bit)	N + ICC	
	Average ope	arating current o	an be obta	ined by the	equation: Ic	_{CC(opr.)} = <u>Cpr</u>	<u>o × V_{CC} × fu</u> 8 (per bit)	N + ICC	
	Average ope	arating current o	an be obta	lined by the	equation: I ₍	_{CC(opr.)} = <u>Cpr</u>	<u>o × V_{CC} × I∥</u>	N + ICC	
	Average ope	erating current o	can be obta	ined by the	equation: I	_{CC(opr.)} = <u>Cpi</u>	<u>o × V_{CC} × fu</u> 8 (per biť)	N + ICC	
	Average ope	arating current o	an be obta	lined by the	equation: I ₍	_{CC(opr.)} = <u>Cpi</u>	<u>o × V_{CC} × fu</u> 8 (per bit)	N + ICC	

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.