FAIRCHILㄷ			October 1996 Revised April 1999
SEMICONDUCTロRTN			
74 VCX 16245			
Low Voltage 16-Bit Bidirectional Transceiver with			
3.6V Tolerant Inputs and Outputs			
General Des	scription		Features
The VCX16245 con buffers with 3-STA ented applications. byte has separate shorted together for determine the dire The $\overline{\mathrm{OE}}$ inputs disa them in a high impe The 74VCX16245 $3.6 \mathrm{~V}) \mathrm{V}_{\mathrm{CC}}$ applicatio The 74VCX16245 technology to achie ing low CMOS pow	tains sixteen nonTE outputs and is The device is b 3-STATE control or full 16-bit opera ction of data flow able both the A and edance state. is designed for ions with I/O compa is fabricated with ve high speed ope er dissipation.	nverting bidirectional intended for bus orite controlled. Each inputs which can be tion. The T / \bar{R} inputs through the device. B ports by placing woltage (1.65 to tibility up to 3.6 V . an advanced CMOS ation while maintain-	■ $1.65 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply operation ■ 3.6V tolerant inputs and outputs t_{PD} 2.5 ns max for 3.0 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ 3.0 ns max for 2.3 V to $2.7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ 6.0 ns max for 1.65 V to $1.95 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ■ Power-down high impedance inputs and outputs - Supports live insertion/withdrawal (Note 1) ■ Static Drive ($\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$) $\pm 24 \mathrm{~mA} @ 3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$ $\pm 18 \mathrm{~mA} @ 2.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ $\pm 6 \mathrm{~mA} @ 1.65 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ■ Uses patented noise/EMI reduction circuitry - Latchup performance exceeds 300 mA - ESD performance: Human body model > 2000 V Machine model >200V Note 1: To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
Ordering Code:			
Order Number	Package Number		Package Description
74VCX16245MTD	MTD48	48-Lead Thin Shrink	mall Outline Package (TSSOP), JEDEC MO-153, 6.1 mm Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code. Logic Symbol			

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC})
DC Input Voltage (V_{l})
Output Voltage (V_{O})
Outputs 3-STATE
Outputs Active (Note 3)
DC Input Diode Current (I_{IK}) $\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$
DC Output Diode Current (IOK)
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$
DC Output Source/Sink Current ($\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$)
DC $V_{\text {CC }}$ or Ground Current per
Supply Pin (I ${ }_{\mathrm{CC}}$ or Ground)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
-0.5 V to +4.6 V
-0.5 V to +4.6 V
-0.5 V to +4.6 V -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-50 \mathrm{~mA}$
$-50 \mathrm{~mA}$
$+50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$\pm 100 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 4)Power Supply
Operating
1.65 V to 3.6 V

Data Retention Only
1.2V to 3.6 V

Input Voltage
-0.3 V to 3.6 V
Output Voltage (V_{O})
Output in Active States $\quad 0 \mathrm{~V}$ to V_{CC}
Output in 3-STATE
0.0 V to 3.6 V

Output Current in $\mathrm{IOH} / \mathrm{I}_{\mathrm{OL}}$

$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 18 \mathrm{~mA}$

$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to $2.3 \mathrm{~V} \quad \pm 6 \mathrm{~mA}$
Free Air Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$10 \mathrm{~ns} / \mathrm{V}$
Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratns. The Recommended Operating Conditions tables will define the conditions for actual device operation.
Note 3: I_{0} Absolute Maximum Rating must be observed
Note 4: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.
DC Electrical Characteristics ($2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage		2.7-3.6	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{gathered}$		V
$\overline{\mathrm{V}}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.4 \\ 0.4 \\ 0.55 \end{gathered}$	V
1	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-STATE Output Leakage	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 10	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \left.\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{I}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note } 5\right) \end{aligned}$	$\begin{aligned} & \hline 2.7-3.6 \\ & 2.7-3.6 \end{aligned}$		$\begin{gathered} 20 \\ \pm 20 \end{gathered}$	$\mu \mathrm{A}$
$\Delta_{\text {L }}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

[^0]| Symbol | Parameter | Conditions | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$ | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1 \mathrm{H}}$ | HIGH Level Input Voltage | | 2.3-2.7 | 1.6 | | V |
| V_{IL} | LOW Level Input Voltage | | 2.3-2.7 | | 0.7 | V |
| V_{OH} | HIGH Level Output Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \\ 2.3 \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.0 \\ 1.8 \\ 1.7 \end{array}$ | | v |
| $\mathrm{V}_{\text {OL }}$ | LOW Level Output Voltage | $\begin{aligned} & \hline \mathrm{IOL}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{IOL}^{2}=18 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \end{gathered}$ | | $\begin{aligned} & \hline 0.2 \\ & 0.4 \\ & 0.6 \end{aligned}$ | v |
| I | Input Leakage Current | $0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$ | 2.3-2.7 | | ± 5.0 | $\mu \mathrm{A}$ |
| loz | 3-STATE Output Leakage | $\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{v}_{\mathrm{IL}} \end{aligned}$ | 2.3-2.7 | | ± 10 | $\mu \mathrm{A}$ |
| IofF | Power Off Leakage Current | $0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{0}\right) \leq 3.6 \mathrm{~V}$ | 0 | | 10 | $\mu \mathrm{A}$ |
| ICC | Quiescent Supply Current | $\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note 6) } \end{aligned}$ | $\begin{aligned} & \text { 2.3-2.7 } \\ & \text { 2.3-2.7 } \end{aligned}$ | | $\begin{gathered} 20 \\ \pm 20 \end{gathered}$ | $\mu \mathrm{A}$ |
| Note 6: Outputs disabled or 3-STATE only.
 DC Electrical Characteristics (1.65V $\leq \mathrm{V}_{\mathrm{CC}}<2.3 \mathrm{~V}$) | | | | | | |
| Symbol | Parameter | Conditions | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$ | Min | Max | Units |
| $\mathrm{V}_{1 \mathrm{H}}$ | HIGH Level Input Voltage | | 1.65-2.3 | $0.65 \times \mathrm{V}_{\text {CC }}$ | | V |
| V_{IL} | LOW Level Input Voltage | | 1.65-2.3 | | $0.35 \times \mathrm{V}_{\mathrm{Cc}}$ | V |
| V_{OH} | HIGH Level Output Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} \hline 1.65-2.3 \\ 1.65 \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \end{array}$ | | V |
| $\mathrm{V}_{\text {OL }}$ | LOW Level Output Voltage | $\begin{aligned} & \begin{array}{l} \mathrm{OL}=100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} \end{array} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 1.65-2.3 \\ 1.65 \end{gathered}$ | | $\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$ | V |
| 1 | Input Leakage Current | $0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$ | 1.65-2.3 | | ± 5.0 | $\mu \mathrm{A}$ |
| loz | 3-STATE Output Leakage | $\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | 1.65-2.3 | | ± 10 | $\mu \mathrm{A}$ |
| Ioff | Power Off Leakage Current | $0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{o}}\right) \leq 3.6 \mathrm{~V}$ | 0 | | 10 | $\mu \mathrm{A}$ |
| ${ }_{\text {cc }}$ | Quiescent Supply Current | $\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \left.\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note } 7\right) \end{aligned}$ | $\begin{aligned} & 1.65-2.3 \\ & 1.65-2.3 \end{aligned}$ | | $\begin{gathered} 20 \\ \pm 20 \end{gathered}$ | $\mu \mathrm{A}$ |
| Note 7: Outputs disabled or 3-STATE only. | | | | | | |

AC Electrical Characteristics (Note 8)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.5 \pm 0.2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$		
		Min	Max	Min	Max	Min	Max	
$\overline{\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Prop Delay	0.8	2.5	1.0	3.0	1.5	6.0	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	0.8	3.8	1.0	4.9	1.5	9.3	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time	0.8	3.7	1.0	4.2	1.5	7.6	ns
toshl $t_{\text {OSLH }}$	Output to Output Skew (Note 9)		0.5		0.5		0.75	ns

Note 8: For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximately 300ps to the AC maximum specification.
Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	0.25	v
	Peak V ${ }_{\text {L }}$		2.5	0.6	
			3.3	0.8	
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	V
	Valley V_{OL}		2.5	-0.6	
			3.3	-0.8	
$\overline{\mathrm{V}_{\text {OHV }}}$	Quiet Output Dynamic	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	v
	Valley V_{OH}		2.5	1.9	
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6	pF
C_{IO}	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{F}=10 \mathrm{MHz}$ $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	20	pF

AC Loading and Waveforms

FIGURE 1. AC Test Circuit

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V_{CC}		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Package Number MTD48

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Note 5: Outputs disabled or 3-STATE only.

