

Absolute Maximum Ratings（Note 3）

Supply Voltage（ V_{CC} ）	-0.5 V to +4.6 V
DC Input Voltage（ V_{l} ）	-0.5 V to +4.6 V
DC Output Voltage（ V_{O} ）	
Outputs 3－STATE	-0.5 V to +4.6 V
Outputs Active（Note 4）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current（ $\mathrm{I}_{1 \mathrm{~K}}$ ） $\mathrm{V}_{1}<0 \mathrm{~V}$	－50 mA
DC Output Diode Current（ I_{OK} ）	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	－50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	＋50 mA
DC Output Source／Sink Current	$\pm 50 \mathrm{~mA}$
（ $\mathrm{IOH}^{\text {／}} \mathrm{OL}$ ）	
DC V ${ }_{\text {CC }}$ or Ground Current	$\pm 100 \mathrm{~mA}$
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions（Note 5）

Power Supply Voltage（ V_{CC} ） Operating
1.65 V to 3.6 V

Data Retention Only

Input Voltage	-0.3 V to 3.6 V
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	
Output in Active States	0 V to V_{CC}
Output in 3－STATE	0 V to 3.6 V
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}-\mathrm{A}$ Outputs	
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 18 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 6 \mathrm{~mA}$
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}-\mathrm{B}$ Outputs	
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 12 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 8 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 3 \mathrm{~mA}$
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate $(\Delta \mathrm{t} / \Delta \mathrm{V})$	
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	$10 \mathrm{~ns} / \mathrm{V}$

Note 3：The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat－ ings．The＂Recommended Operating Conditions＂table will define the condi－ tions for actual device operation．
Note 4： I_{O} Absolute Maximum Rating must be observed．
Note 5：Floating or unused inputs must be held HIGH or LOW．

DC Electrical Characteristics（2．7V $<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$ ）

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
$\overline{\mathrm{V}_{1 \mathrm{H}}}$	HIGH Level Input Voltage		2．7－3．6	2.0		V
V_{IL}	LOW Level Input Voltage		2．7－3．6		0.8	V
V_{OH}	HIGH Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{array}$		V
	HIGH Level Output Voltage B Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{array}$		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.4 \\ 0.4 \\ 0.55 \\ \hline \end{gathered}$	V
	LOW Level Output Voltage B Outputs	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.4 \\ 0.55 \\ 0.8 \end{gathered}$	V
I_{1}	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2．7－3．6		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3－STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2．7－3．6		± 10	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
${ }^{\text {c }}$ C	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note 6) } \end{aligned}$	$\begin{aligned} & \hline 2.7-3.6 \\ & 2.7-3.6 \end{aligned}$		$\begin{gathered} 20 \\ \pm 20 \end{gathered}$	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Increase in ICC per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2．7－3．6		750	$\mu \mathrm{A}$
Note 6：Outputs disabled or 3－STATE only．						

Symbol	Parameter	Conditions	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	Min	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage		2.3-2.7	1.6		V
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	V
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \\ 2.3 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.0 \\ 1.8 \\ 1.7 \end{array}$		v
	HIGH Level Output Voltage B Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \\ 2.3 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-2 \\ 2.0 \\ 1.8 \\ 1.7 \end{gathered}$		V
$\overline{\mathrm{V} \text { OL }}$	LOW Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.6 \end{aligned}$	V
	LOW Level Output Voltage B Outputs	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{l}=6 \mathrm{~mA} \\ & \mathrm{l}=8 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.3-2.7 \\ 2.3 \\ 2.3 \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.6 \end{aligned}$	V
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.3-2.7		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-2.7		± 10	$\mu \mathrm{A}$
loff	Power Off Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \left.\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note } 7\right) \end{aligned}$	$\begin{aligned} & 2.3-2.7 \\ & 2.3-2.7 \end{aligned}$		$\begin{gathered} 20 \\ \pm 20 \end{gathered}$	$\mu \mathrm{A}$
Note 7: Outputs disabled or 3-STATE only. DC Electrical Characteristics (1.65V $\left.\leq \mathrm{V}_{\mathrm{CC}}<2.3 \mathrm{~V}\right)$						
Symbol	Parameter	Conditions	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
$\mathrm{V}_{1 \mathrm{H}}$	HIGH Level Input Voltage		1.65-2.3	$0.65 \times \mathrm{V}_{\text {cC }}$		V
V_{IL}	LOW Level Input Voltage		1.65-2.3		$0.35 \times \mathrm{V}_{\text {CC }}$	V
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \end{aligned}$	$\begin{array}{c\|} \hline 1.65-2.3 \\ 1.65 \end{array}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \end{gathered}$		V
	HIGH Level Output Voltage B Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$	$\begin{array}{c\|} \hline 1.65-2.3 \\ 1.65 \end{array}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \end{gathered}$		V
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage A Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{loL}=6 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 1.65-2.3 \\ 1.65 \\ \hline \end{array}$		$\begin{aligned} & \hline 0.2 \\ & 0.3 \\ & \hline \end{aligned}$	V
	LOW Level Output Voltage B Outputs	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} \end{aligned}$	$\begin{array}{c\|} \hline 1.65-2.3 \\ 1.65 \end{array}$		$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	V
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.65-2.3		± 5.0	$\mu \mathrm{A}$
loz	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.65-2.3		± 10	$\mu \mathrm{A}$
ToFF	Power Off Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{0}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note 8) } \end{aligned}$	$\begin{aligned} & 1.65-2.3 \\ & 1.65-2.3 \end{aligned}$		$\begin{gathered} \\ 20 \\ \pm 20 \end{gathered}$	$\mu \mathrm{A}$
Note 8: Outputs disabled or 3-STATE only.						

AC Electrical Characteristics (Note 9)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$		
		Min	Max	Min	Max	Min	Max	
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay, A to B	0.6	4.4	0.8	5.6	1.5	9.8	ns
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay, B to A	0.6	3.5	0.8	4.2	1.5	8.4	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time, A to B	0.6	5.0	0.8	6.6	1.5	9.8	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time, B to A	0.6	4.5	0.8	5.6	1.5	9.8	ns
$\begin{aligned} & \hline t_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time, A to B	0.6	4.2	0.8	4.7	1.5	8.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time, B to A	0.6	3.6	0.8	4.0	1.5	7.2	ns
toshl $\mathrm{t}_{\mathrm{OSLH}}$	Output to Output Skew (Note 10)		0.5		0.5		0.75	ns

Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v_{cc} (V)		Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak V_{OL}, B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.7 \\ & 1.0 \\ & \hline \end{aligned}$	V
	Quiet Output Dynamic Peak V_{OL}, A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{gathered} \hline 0.2 \\ 0.45 \\ 0.65 \end{gathered}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$, B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{array}{r} \hline-0.3 \\ -0.7 \\ -1.0 \\ \hline \end{array}$	V
	Quiet Output Dynamic Valley, V_{OL}, A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{gathered} \hline-0.2 \\ -0.45 \\ -0.65 \end{gathered}$	V
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}, B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & \hline 1.8 \\ & 2.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.7 \\ & 2.0 \\ & \hline \end{aligned}$	V
	Quiet Output Dynamic Valley V_{OH}, A to B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.5 \end{aligned}$	V
Capacitance					
Symbol	Parameter	Conditions		$=+25^{\circ} \mathrm{C}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V		6	pF
$\mathrm{Cl}_{\text {IO }}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V		7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3		20	pF

AC Loading and Waveforms

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 2. Waveform for Inverting and Non-inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	V_{CC}		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

PIN \#1 IDENT. -

LAND PATTERN RECOMMENDATION

A. CONFORMS TO JEDEC REGISTRATION ML-153, VARIATION AC,

REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH,

AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5N, 1982

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
