

Functional Description

The VHC153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$. The two 4-input multiplexer circuits have individual active-LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables $\left(\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}\right)$ are HIGH, the corresponding outputs $\left(\mathrm{Z}_{\mathrm{a}}\right.$, Z_{b}) are forced LOW. The VHC153 is the logic implementa tion of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the Select inputs. The logic equations for the outputs are shown below.

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{a}}= & \overline{\mathrm{E}}_{\mathrm{a}} \cdot\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right) \\
\mathrm{Z}_{\mathrm{b}}= & \overline{\mathrm{E}}_{\mathrm{b}} \cdot\left(\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{aligned}
$$

Truth Table

Select Inputs		Inputs (a or b)					Output
S_{0}	S_{1}	$\overline{\mathrm{E}}$	I_{0}	I_{1}	I_{2}	I_{3}	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

[^0]
Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})
DC Input Voltage (V_{IN})
DC Output Voltage ($\mathrm{V}_{\mathrm{OUT}}$)
Input Diode Current (I_{IK})
Output Diode Current (I_{OK})
DC Output Current (lout)
DC $V_{C C} / G N D$ Current ($I_{C C}$)
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
Lead Temperature (T_{L})
(Soldering, 10 seconds)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 2)Supply Voltage (V_{CC})
2.0 V to 5.5 V

Input Voltage (V_{IN})
0 V to +5.5
OV to V_{CC}
Operating Temperature (TopR) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
$V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
$0 \sim 100 \mathrm{~ns} / \mathrm{V}$
$V_{C C}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
0~20 ns/V
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.
Note 2: Unused inputs must be held HIGH or LOW. They may not float

DC Electrical Characteristics

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

