FAIRCHILD

BEMICONDUCTOR IM

74VHC221A Dual Non-Retriggerable Monostable Multivibrator

General Description

The VHC221A is an advanced high speed CMOS Monostable Multivibrator fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Each multivibrator features both a negative, A, and a positive, B, transition triggered input, either of which can be used as an inhibit input. Also included is a clear input that when taken LOW resets the one-shot. The VHC221A can be triggered on the positive transition of the clear while A is held LOW and B is held HIGH. The VHC221A is non-retriggerable, and therefore cannot be retriggered until the output pulse times out. The output pulse width is determined by the equation:

PW = (Rx)(Cx); where PW is in seconds, R is in ohms, and C is in farads.

Limits for R_x and C_x are:

External capacitor, Cx: No limit External resistors, R_x: V_{CC}= 2.0V, 5 k\Omega min

 V_{CC} > 3.0V, 1 k Ω min

An input protection circuit ensures that 0 to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

April 1994

Revised May 1999

Features

■ High Speed: t_{PD} = 8.1 ns (typ) at V_{CC} = 5V

- \blacksquare Low Power Dissipation: I_{CC} = 4 μA (Max) at T_A = 25°C
- Active State: $I_{CC} = 600 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Power down protection is provided on all inputs
- Pin and function compatible with 74HC221A

Ordering Code:

Order Number	Package Number	Package Description
74VHC221AM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74VHC221ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC221AMTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC221AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

© 1999 Fairchild Semiconductor Corporation DS011680.prf

74VHC221A

		Input	S	Out	puts	Function	
	Ā	В	CLR	Q	Q	Function	
	ζ	Н	Н	Л	Ъ	Output Enable	
	Х	L	Н	L	Н	Inhibit	
	Н	Х	Н	L	Н	Inhibit	
	L	\	Н	7	7	Output Enable	
	L	Н	\ \	Ч	5	Output Enable	
	Х	Х	L	L	Н	Reset	
∽_ = HIGH-to	-LOW Tr	ansition				•	
= LOW-to-	HIGH Tra	ansition					

H = HIGH Voltage Level L = LOW Voltage Level X: Don't Care

Truth Table

Block Diagrams

Note A: Cx, Rx, Dx are external Capacitor, Resistor, and Diode, respectively. Note B: External clamping diode, Dx;

External capacitor is charged to V_{CC} level in the wait state, i.e. when no trigger is applied.

If the supply voltage is turned off, Cx discharges mainly through the internal (parasitic) diode. If Cx is sufficiently large and V_{CC} drops rapidly, there will be some possibility of damaging the IC through in rush current or latch-up. If the capacitance of the supply voltage filter is large enough and V_{CC} drops slowly, the in rush current is automatically limited and damage to the IC is avoided.

The maximum value of forward current through the parasitic diode is ±20 mA. In the case of a large Cx, the limit of fall time of the supply voltage is determined as follows:

 $t_f \ge (V_{CC} - 0.7) \text{ Cx/20 mA}$

(t_f is the time between the supply voltage turn off and the supply voltage reaching 0.4 V_{CC})

In the event a system does not satisfy the above condition, an external clamping diode (Dx) is needed to protect the IC from rush current.

System Diagram

٧_{II}

V_{IL} V_{CC} V_{REF}H

V_{REF}L GND V_{OH} V_{OL} V_{OL}

1. Stand-by State

Timing Chart

CLR

Rx/Cx

The external capacitor (Cx) is fully charged to V_{CC} in the Stand-by State. That means, before triggering, the Q_P and Q_N transistors which are connected to the Rx/Cx node are in the off state. Two comparators that relate to the timing of the output pulse, and two reference voltage supplies turn off. The total supply current is only leakage current.

t_w out

2. Trigger Operation

Trigger operation is effective in any of the following three cases. First, the condition where the \overline{A} input is LOW, and B input has a rising signal; second, where the B input is HIGH, and the A input has a falling signal; and third, where the \overline{A} input is LOW and the B input is HIGH, and the CLR input has a rising signal.

After a trigger becomes effective, comparators C1 and C2 start operating, and Q_N is turned on. The external capacitor discharges through Q_N. The voltage level at the Rx/Cx node drops. If the Rx/Cx voltage level falls to the internal reference voltage V_{ref}L, the output of C1 becomes LOW. The flip-flop is then reset and Q_N turns off. At that moment C1 stops but C2 continues operating.

After Q_N turns off, the voltage at the Rx/Cx node starts rising at a rate determined by the time constant of external capacitor Cx and resistor Rx.

Upon triggering, output Q becomes HIGH, following some delay time of the internal F/F and gates. It stays HIGH even if the voltage of Rx/Cx changes from falling to rising. When Rx/Cx reaches the internal reference voltage V_{ref}H, the output of C2 becomes LOW, the output Q goes LOW and C2 stops its operation. That means, after triggering, when the voltage level of the Rx/Cx node reaches V_{ref}H, the IC returns to its MONOSTABLE state.

t_w out

With large values of Cx and Rx, and ignoring the discharge time of the capacitor and internal delays of the IC, the width of the output pulse, t_W (OUT), is as follows:

- t_W (OUT) = 1.0 Cx Rx
- 3. Reset Operation

t_₩ OUT

In normal operation, the $\overline{\text{CLR}}$ input is held HIGH. If $\overline{\text{CLR}}$ is LOW, a trigger has no affect because the Q output is held LOW and the trigger control F/F is reset. Also, Q_p turns on and Cx is charged rapidly to V_{CC}.

This means if $\overline{\text{CLR}}$ is set LOW, the IC goes into a wait state.

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V -0.5V to +7.0V

–20 mA

±20 mA

±25 mA

±50 mA

260°C

–0.5 to V_{CC} +0.5V

–65°C to 150°C

Supply Voltage (V_{CC})

DC Input Voltage (V_{IN}) DC Output Voltage (V_{OUT})

Input Diode Current (I_{IK})

Output Diode Current (I_{OK})

DC Output Current (I_{OUT})

Storage Temperature (T_{STG})

DC V_{CC}/Current (I_{CC})

Lead Temperature (T_L) Soldering, 10 seconds

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature	
(T _{opr})	-40° to +85°C
Input Rise and Fall Time	
(t _r , t _f) (CLR only)	
$V_{CC} = 3.3V \pm 0.3V$	0 ~ 100 ns/V
$V_{CC}=5.0V\pm\!\!0.5V$	0 ~ 20 ns/V
External Capacitor - Cx	No Limitation (Note 3) F
External Resistor - Rx	>5 k Ω (Note 3) (V _{CC} = 2.0V)
	>1 k Ω (Note 3) (V _{CC} $>$ 3.0V)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommended operation outside data book specifications.

Note 2: Unused inputs must be used HIGH or LOW. They may not float. Note 3: The maximum allowable values of Cx and Rx are a function of the leakage of capacitor Cx, the leakage of the device, and leakage due to board layout and surface resistance.

Susceptibility to externally induced noise signals may occur for Rx> 1 M\Omega.

Symbol	Parameter	Vcc		$T_A = 25^{\circ}C$		T _A = -40	° to 85°C	Unite	Cor	ditions
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	001	luitions
V _{IH}	HIGH Level	2.0	1.50			1.50		V		
	Input Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level	2.0			0.50		0.50	V		
	Input Voltage	3.0 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80		v		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1		0.1		or V _{IL}	
		4.5		0.0	0.1		0.1	V		
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$
		4.5			0.36		0.44			I _{OL} = 8 mA
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μΑ	$V_{IN} = 5.5V$	or GND
I _{IN}	Rx/Cx Terminal	5.5			±0.25		±2.50	μΑ	$V_{IN} = V_{CC}$	or GND
	Off-State Current									
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$	or GND
I _{CC}	Active—State (Note 4)	3.0		160	250		280		$V_{IN} = V_{CC}$	or GND
	Supply Current	4.5		380	500		650	μA	Rx/Cx = 0	.5 V _{CC}
		5.5		560	750		975			

DC Electrical Characteristics

Note 4: Per Circuit

Symbol	Parameter	V _{CC}	Т	A = 25°C		$T_A = -40^\circ$	C to +85°C	Unite	Con	ditions
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Cond	unions
PLH	Propagation Delay Time	3.3 ± 0.3		13.4	20.6	1.0	24.0	ns	$C_L = 15 \text{ pF}$	
PHL	(A, B–Q, Q)			15.9	24.1	1.0	27.5		$C_L = 50 \text{ pF}$	
		5.0 ± 0.5		8.1	12.0	1.0	14.0	ns	C _L = 15 pF	
				9.6	14.0	1.0	16.0	113	$C_L = 50 \text{ pF}$	
PLH	Propagation Delay Time	3.3 ± 0.3		14.5	22.4	1.0	26.0	ns	C _L = 15 pF	
PHL	(CLR Trigger—Q, Q)			17.0	25.9	1.0	29.5	110	$C_L = 50 \text{ pF}$	
		5.0 ± 0.5		8.7	12.9	1.0	15.0	ns	$C_L = 15 \text{ pF}$	
				10.2	14.9	1.0	17.0	110	$C_L = 50 \text{ pF}$	
PLH	Propagation Delay Time	3.3 ± 0.3		10.3	15.8	1.0	18.5	ns	$C_L = 15 \text{ pF}$	
t _{PHL} (CLR—Q, Q)	(CLR—Q, Q)			12.8	19.3	1.0	22.0	110	$C_L = 50 \text{ pF}$	
		5.0 ± 0.5		6.3	9.4	1.0	11.0	ns	C _L = 15 pF	
				7.8	11.4	1.0	13.0	113	$C_L = 50 \text{ pF}$	
NOUT	Output Pulse Width	2.0		415						C _X = 28 pF
		3.3 ± 0.3		345				ns	$C_L = 50 \text{ pF}$	$R_{\chi} = 6 \ k\Omega$
		5.0 ± 0.5		312						
		3.3 ± 0.3		160	240		300	ns	$C_L = 50 \text{ pF}$	Cx = 28 pF
		5.0 ± 0.5		133	200		240			$Rx = 2 k\Omega$
		3.3 ± 0.3	90	100	110	90	110	us	$C_L = 50 \text{ pF}$	Cx = 0.01
		5.0 ± 0.5	90	100	110	90	110			Rx = 10 kΩ
		3.3 ± 0.3	0.9	1.0	1.1	0.9	1.1	ms	C _L = 50 pF	Cx = 0.1 μ
		5.0 ± 0.5	0.9	1.0	1.1	0.9	1.1			$Rx = 10 k\Omega$
t _{wOUT}	Output Pulse Width Error									
	Between Circuits			±1				%		
	(In same Package)									
	Innut Canacitance							-		
N				4	10		10	pF	V _{CC} = Open	1
PD Vote 5: C _{PE} perating cu	Power Dissipation Capacitance b is defined as the value of the urrent can be obtained by the e	internal equiv quation:	alent capacita	4 73	10 calculated	from the oper	10 rating current	pF pF consump	V _{CC} = Open (Note 5)	ad. Average
Note 5: C _{PC} pperating cu I _{CC} (opr.) I _{CC} ¹ : Actir Duty: % Note 6: Ref	Power Dissipation Capacitance b is defined as the value of the urrent can be obtained by the e = $C_{PD}^{-V}Cc^{-f}_{IN+} I_{CC}^{-1*}Duty/100}$ we Supply Current er to 74VHC221A Timing Charl Derating Requi	internal equiv quation: + I _{CC} /2 (per C t.	alent capacitai Sircuit)	4 73	10 calculated	from the oper	10	pF pF consump	V _{CC} = Open (Note 5)	ad. Average
Note 5: C _{PD} Note 5: C _{Pt} operating cu I _{CC} (opr.) I _{CC} ¹ : Actir Duty: % Note 6: Ref	Power Dissipation Capacitance ja defined as the value of the irrent can be obtained by the e = $C_{PD}^{+}V_{CC}^{+}f_{IN+} I_{CC}^{1+}Duty/100$ ve Supply Current er to 74VHC221A Timing Chart perating Requi	internal equiv quation: + I _{CC} /2 (per C t. remen	alent capacitar Circuit)	4 73 nce which is	10 calculated	from the oper	10	pF pF consump	V _{CC} = Open (Note 5) tition without loa	ad. Average
Note 5: C _{PE} operating ct I _{CC} (opr.) I _{CC} ¹ : Actir Duty: % Note 6: Ref ACCO	Power Dissipation Capacitance is defined as the value of the urrent can be obtained by the e = C _{PD} *V _{CC} *f _{IN+} I _{CC} ¹⁺ Duty/100 ve Supply Current er to 74VHC221A Timing Chart perating Requi Parameter	internal equiv quation: + I _{CC} /2 (per C t. remen	alent capacitar Circuit) t	4 73 Ince which is	10 calculated	from the oper	10 rating current	pF pF consump	V _{CC} = Open (Note 5) ition without loa	ad. Average
Note 5: C _{PE} operating ct I _{CC} (opr.) I _{CC} ¹ : Actir Duty: % Note 6: Ref ACO Symbol w(L)	Power Dissipation Capacitance is defined as the value of the urrent can be obtained by the e = C _{PD} *V _{CC} *f _{IN+} I _{CC} ¹⁺ Duty/100 ve Supply Current er to 74VHC221A Timing Chart perating Requi Parameter Minimum Trioger	internal equiv quation: + I _{CC} /2 (per C t. remen	alent capacitar Circuit) t V _{CC} (V) 3.3	4 73 Ince which is	10 calculated	from the oper = 25°C [yp	10 Tating current	pF pF consump $A = -40^{\circ}$ Min 5.0	V _{CC} = Open (Note 5) ition without loa °C to +85°C Max	ad. Average
Note 5: C _{PC} Operating ct I _{CC} (opr.) I _{CC} (opr.) Ucc 1: Acti Duty: % Note 6: Ref ACC O Symbol W(L) w(H)	Power Dissipation Capacitance is defined as the value of the irrent can be obtained by the e = C _{PD} *V _{CC} *f _{IN+} I _{CC} ¹⁺ Duty/100 ve Supply Current er to 74VHC221A Timing Chart perating Requi Parameter Minimum Trigger Pulse Width	internal equiv quation: + I _{CC} /2 (per C t.	t V _{cc} (V) 3.3 5.0	4 73 nce which is Min 5.0	10 calculated T _A =	from the oper	10 rating current	pF pF consump $\overline{A} = -40$ <u>Min</u> 5.0 5.0	V _{CC} = Open (Note 5) tition without loa °C to +85°C Max	ad. Average
Note 5: C _{PC} Note 5: C _{PC} operating ct I _{CC} (opr.) I _{CC} (opr.) Duty: % Note 6: Ref ACC O Symbol W(L) W(L)	Power Dissipation Capacitance is defined as the value of the irrent can be obtained by the e = C _{PD} *V _{CC} *f _{IN+} I _{CC} ¹⁺ Duty/100 ve Supply Current er to 74VHC221A Timing Chart perating Requi Parameter Minimum Trigger Pulse Width Minimum Clear	internal equiv quation: + I _{CC} /2 (per C t.	t Vcc (V) 3.3 5.0 3.3	4 73 nce which is Min 5.0 5.0 5.0	10 calculated T _A =	from the oper	10 rating current	pF pF $consump$ $A = -40^{\circ}$ Min 5.0 5.0 5.0	V _{CC} = Open (Note 5) tition without loa °C to +85°C Max	ad. Average

74VHC221A

www.fairchildsemi.com

7

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.