EAIRCHILD
 SEMICロNDபСTロRTN
 74VHC273
 Octal D-Type Flip-Flop

General Description

The VHC273 is an advanced high speed CMOS Octal Dtype flip-flop fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.
The register has a common buffered Clock (CP) which is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The Master Reset ($\overline{\mathrm{MR}}$) input will clear all flip-flops simultaneously. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{\mathrm{MR}}$ input.
An input protection circuit insures that 0 V to 7 V can be applied to the inputs pins without regard to the supply volt-
age. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- High Speed: $\mathrm{f}_{\mathrm{MAX}}=165 \mathrm{MHz}$ (typ) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low power dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}(\max)$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$
- Power down protection is provided on all inputs

■ Low noise: $\mathrm{V}_{\mathrm{OLP}}=0.9 \mathrm{~V}$ (max)

- Pin and function compatible with 74 HC 273

Ordering Code:

Order Number	Package Number	Package Description
$74 \mathrm{VHC273M}$	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74 VHC 273 SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
$74 \mathrm{VHC273MTC}$	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74 VHC 273 N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Logic Symbols

IEEE/IEC

Connection Diagram

Pin Descriptions

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$\overline{M R}$	Master Reset
$C P$	Clock Pulse Input
$Q_{0}-Q_{7}$	Data Outputs

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})
DC Input Voltage (V_{IN})
DC Output Voltage (VOUT)
Input Diode Current ($\left(I_{\mid K}\right)$
Output Diode Current (lok)
DC Output Current (IOUT) DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current (I_{CC}) Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$) Lead Temperature (T_{L})
(Soldering, 10 seconds)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 75 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Recommended Operating

Conditions (Note 2)

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.0 V to +5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to +5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{OPR}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 100 \mathrm{~ns} / \mathrm{V}$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$0 \mathrm{~ns} / \mathrm{V} \sim 20 \mathrm{~ns} / \mathrm{V}$

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specificaions should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions	
			Min	Typ	Max	Min Max			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{gathered} 2.0 \\ 3.0-5.5 \end{gathered}$	$\begin{gathered} 1.50 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$			$\begin{gathered} 1.50 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V		
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage	$\begin{gathered} 2.0 \\ 3.0-5.5 \end{gathered}$			$\begin{gathered} 0.50 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{gathered} 0.50 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V		
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	V	$\begin{array}{r} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ \text { or } \mathrm{V}_{\mathrm{IL}} \end{array}$	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$	V		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\begin{array}{r} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ \text { or } \mathrm{V}_{\mathrm{IL}} \end{array}$	$\mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & \hline 0.44 \\ & 0.44 \end{aligned}$	V		$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$
$\overline{I_{\mathrm{IN}}}$	Input Leakage Current	0-5.5			± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	
$\overline{\mathrm{I} C \mathrm{C}}$	Quiescent Supply Current	5.5			4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or	GND

Noise Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	Conditions
			Typ	Limits		
$\mathrm{V}_{\text {OLP }}$ (Note 3)	Quiet Output Maximum Dynamic V_{OL}	5.0	0.6	0.9	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OLV}} \\ & (\text { Note 3) } \end{aligned}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.6	-0.9	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\mathrm{IHD}}$ (Note 3)	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{aligned} & \hline \mathrm{V}_{\text {ILD }} \\ & \text { (Note 3) } \end{aligned}$	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Note 3: Parameter guaranteed by design.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

 Package Number N20A
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
