

Absolute Maximum Ratings(Note 1)

S
oltage (V_{CC})
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 2)| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2.0 V to +5.5 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to +5.5 V |
| Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ | 0 V to V_{CC} |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{OPR}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ | |
| $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ | $0 \sim 100 \mathrm{~ns} / \mathrm{V}$ |
| $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ | $0 \sim 20 \mathrm{~ns} / \mathrm{V}$ |

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is eliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specificafions. Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions	
			Min	Typ	Max	Min Max			
V_{IH}	HIGH Level Input Voltage	$\begin{gathered} 2.0 \\ 3.0-5.5 \end{gathered}$	$\begin{gathered} 1.50 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$			$\begin{gathered} 1.50 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V		
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage	$\begin{gathered} 2.0 \\ 3.0-5.5 \end{gathered}$			$\begin{gathered} 0.50 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	$\begin{gathered} 0.50 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V		
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	V	$\begin{array}{r\|} \mathrm{V}_{\mathrm{IN}} \end{array}=\mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$	V		
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\begin{array}{r} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ \text { or } \mathrm{V}_{\mathrm{IL}} \end{array}$	$\mathrm{I}_{\text {OL }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & \hline 0.44 \\ & 0.44 \end{aligned}$	V		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$
$\overline{I_{\mathrm{IN}}}$	Input Leakage Current	0-5.5			± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	
I_{CC}	Quiescent Supply Current	5.5			2.0	20.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$	or GND

Noise Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Units	Conditions
			Typ	Limit		
$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {OLP }} \\ \text { (Note 3) } \end{array}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.3	0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {OLV }} \\ \text { (Note 3) } \end{array}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.3	-0.8	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {IHD }} \\ \text { (Note 3) } \end{array}$	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{V}_{\text {ILD }}$ (Note 3)	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Note 3: Parameter guaranteed by design.						

AC Electrical Characteristics									
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Typ	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay	3.3		5.5	7.9	1.0	9.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
		± 0.3		8.0	11.4	1.0	13.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		5.0		3.8	5.5	1.0	6.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
		± 0.5		5.3	7.5	1.0	8.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4	10		10	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			14				pF	(Note 4)

Note 4: $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average
operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}}(\mathrm{opr})=.\mathrm{C}_{\mathrm{PD}}{ }^{*} \mathrm{~V}_{\mathrm{CC}}{ }^{*} \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 4$ (per gate).

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
 Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
