FAIRCHILD

SEMICONDUCTOR

74VHC373 Octal D-Type Latch with 3-STATE Outputs

General Description

The VHC373 is an advanced high speed CMOS octal Dtype latch with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type latch is controlled <u>by</u> a latch enable input (LE) and an output enable input (\overline{OE}). The latches appear transparent to data when latch enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is LATCHED. When the \overline{OE} input is HIGH, the eight outputs are in a high impedance state.

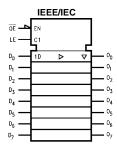
An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply volt-

age. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

February 1993

Revised April 1999

Features


- High Speed: t_{PD} = 5.0 ns (typ) @ V_{CC} = 5V
- $\blacksquare High Noise Immunity: V_{NIH} = V_{NIL} = 28\% V_{CC} (Min)$
- Power Down Protection is provided on all inputs
- Low Noise: V_{OLP} = 0.6V (typ)
- Low Power Dissipation: $I_{CC} = 4 \ \mu A \ (Max) @ T_A = 25^{\circ}C$
- Pin and Function Compatible with 74HC373

Ordering Code:

Order Number	Package Number	Package Description
74VHC373M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

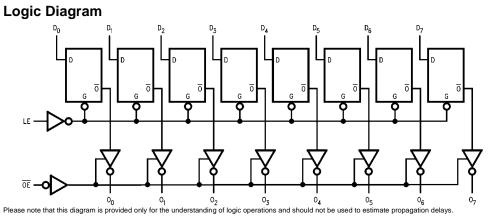
Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
OE	Output Enable Input
O ₀ –O ₇	3-STATE Outputs


© 1999 Fairchild Semiconductor Corporation DS011555.prf

Functional Description

Truth Table

	Inputs	Outputs	
LE	OE	D _n	0 _n
Х	н	Х	Z
н	L	L	L
н	L	н	н
L	L	Х	0 ₀

 $\label{eq:constraint} \begin{array}{l} \mathsf{H} = \mathsf{HIGH} \ \mathsf{Voltage} \ \mathsf{Level} \\ \mathsf{L} = \mathsf{LOW} \ \mathsf{Voltage} \ \mathsf{Level} \\ \mathsf{Z} = \mathsf{High} \ \mathsf{Impedance} \\ \mathsf{X} = \mathsf{Immaterial} \\ \mathsf{O}_0 = \mathsf{Previous} \ \mathsf{O}_0 \ \mathsf{before} \ \mathsf{HIGH} \ \mathsf{to} \ \mathsf{LOW} \ \mathsf{transition} \ \mathsf{of} \ \mathsf{Latch} \ \mathsf{Enable} \end{array}$

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to + 7.0V
DC Input Voltage (VIN)	-0.5V to + 7.0V
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
Input Diode Current (IIK)	–20 mA
Output Diode Current	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to + 5.5V
Input Voltage (V _{IN})	0V to + 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _{OPR})	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=3.3V\pm0.3V$	0~100 ns/V
$V_{CC}=5.0\pm0.5V$	0 ~ 20 ns/V

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Con	luitions
VIH	HIGH Level	2.0	1.50			1.50		V		
	Input Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level	2.0			0.50		0.50	V		
	Input Voltage	3.0 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	I _{OH} = -50 μA
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80		v		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V		$I_{OL} = 4 \text{ mA}$
		4.5			0.36		0.44	v		I _{OL} = 8 mA
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5	μΑ	V _{IN} = V _{IH} c	or V _{IL}
	Off-State Current								$V_{OUT} = V_C$	_C or GND
I _{IN}	Input Leakage Current	0 - 5.5			±0.1	1	±1.0	μA	V _{IN} = 5.5 or GND	
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$	or GND

Noise Characteristics

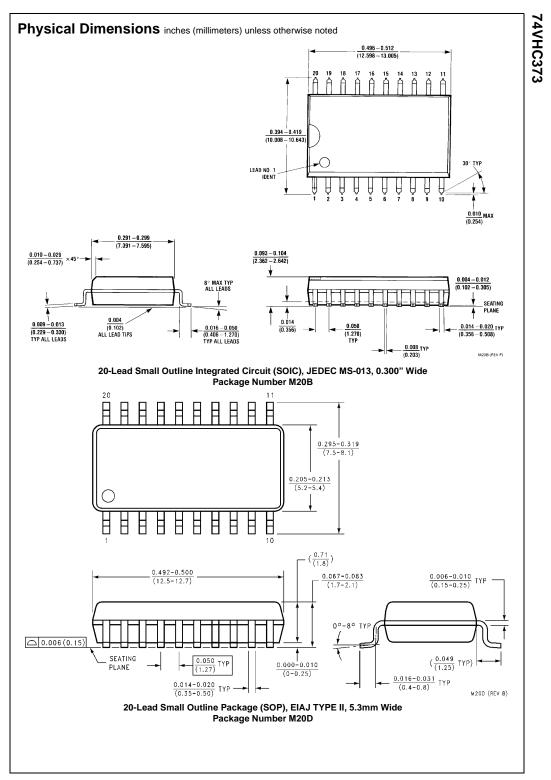
		1				-	
Symbol	Parameter	V _{CC}	T _A =	+25°C	Units	Conditions	
Gymbol	i alameter	(V)	Тур	Limits	onita	Conditions	
V _{OLP} (Note 3)	Quiet Output Maximum Dynamic V _{OL}	5.0	0.6	0.9	V	C _L = 50 pF	
V _{OLV} (Note 3)	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.6	-0.9	V	C _L = 50 pF	
V _{IHD} (Note 3)	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF	
V _{ILD} (Note 3)	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF	

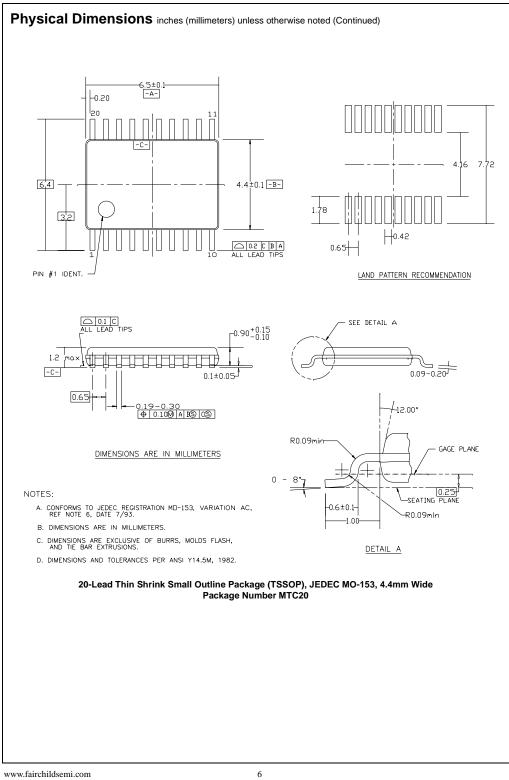
3

Note 3: Parameter guaranteed by design.

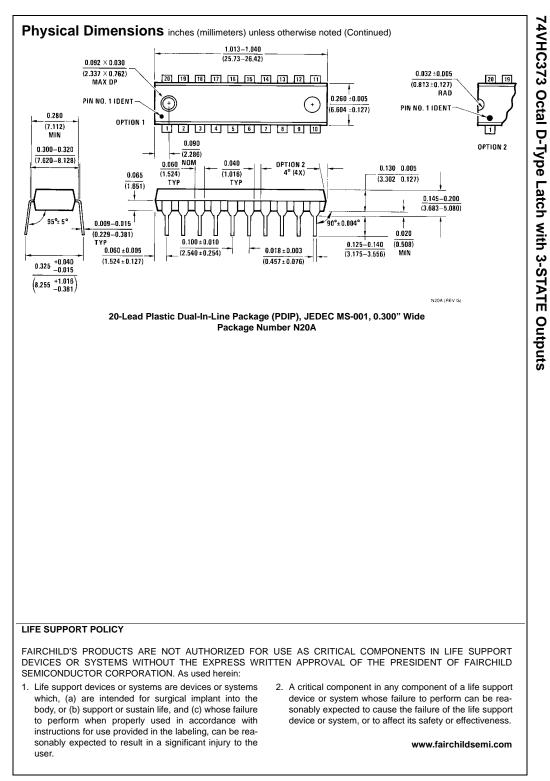
က
ŝ
C
Ť
5
4
N

AC Electrical Characteristics


Symbol	Parameter	V _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	Units	Cond	litions
Gymbol		(V)	Min	Тур	Max	Min	Max	onno	Cond	litions
t _{PLH}	Propagation Delay	3.3 ± 0.3		7.0	11.0	1.0	13.0	ns		C _L = 15 pF
t _{PHL}	Time (LE to O _n)			9.5	14.5	1.0	16.5	115		$C_L = 50 \text{ pF}$
		5.0 ± 0.5		4.9	7.2	1.0	8.5	ns		$C_{L} = 15 pF$
				6.4	9.2	1.0	10.5	ns		$C_L = 50 \text{ pF}$
t _{PLH}	Propagation Delay	3.3 ± 0.3		7.3	11.4	1.0	13.5			C _L = 15 pF
t _{PHL}	Time (D to O _n)			9.8	14.9	1.0	17.0	20		$C_L = 50 \text{ pF}$
		5.0 ± 0.5		5.0	7.2	1.0	8.5	ns		$C_L = 15 pF$
				6.5	9.2	1.0	10.5			$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE	3.3 ± 0.3		7.3	11.4	1.0	13.5	ns	$R_L = 1 k\Omega$ C	C _L = 15 pF
t _{PZH}	Output			9.8	14.9	1.0	17.0	115		$C_L = 50 \text{ pF}$
	Enable Time	5.0 ± 0.5		5.5	8.1	1.0	9.5			$C_{L} = 15 pF$
				7.0	10.1	1.0	11.5	ns		$C_{L} = 50 pF$
t _{PLZ}	3-STATE Output	3.3 ± 0.3		9.5	13.2	1.0	15.0		$R_L = 1 k\Omega$	$C_{L} = 50 pF$
t _{PHZ}	Disable Time	5.0 ± 0.5		6.5	9.2	1.0	10.5	ns		$C_L = 50 \text{ pF}$
t _{OSLH}	Output to	3.3 ± 0.3			1.5		1.5		(Note 4)	$C_{L} = 50 pF$
t _{OSHL}	Output Skew	5.0 ± 0.5			1.0		1.0	ns		$C_L = 50 \text{ pF}$
CIN	Input Capacitance			4	10		10	pF	$V_{CC} = Open$	
COUT	Output Capacitance			6				pF	$V_{CC} = 5.0V$	
CPD	Power Dissipation			27				pF	(Note 5)	
	Capacitance					1				


Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLH \ max} - t_{PLH \ min}|; \ t_{OSHL} = |t_{PHL \ max} - t_{PHL \ min}|$

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/8$ (per Latch). The total C_{PD} when n pcs. of the Latch operates can be calculated by the equation: C_{PD} (total) = 14 + 13n.


AC Operating Requirements

Symbol	Parameter	v _{cc}	T _A = +25°C			T _A = -40°	Units	
		(V)	Min	Тур	Max	Min	Max	Units
t _W (H) Minimum Pulse Width (LE)	Minimum Pulse Width (LE)	3.3 ± 0.3	5.0			5.0		ns
		5.0 ± 0.5	5.0			5.0		115
t _S Min	Minimum Set-Up Time	3.3 ± 0.3	4.0			4.0		ns
		5.0 ± 0.5	4.0			4.0		115
t _H	Minimum Hold Time	3.3 ± 0.3	1.0			1.0		ns
		5.0 ± 0.5	1.0			1.0		115

74VHC373

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.