# FAIRCHILD

SEMICONDUCTOR

# 74VHC374 Octal D-Type Flip-Flop with 3-STATE Outputs

### **General Description**

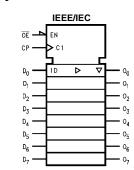
The VHC374 is an advanced high speed CMOS octal flipflop with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type flip-flop is controlled by a clock input (CP) and an output enable input ( $\overline{(OE)}$ . When the  $\overline{OE}$  input is HIGH, the eight outputs are in a HIGH impedance state.

An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

November 1992

Revised April 1999

### Features


- High Speed:  $t_{PD} = 5.4$  ns (typ) at  $V_{CC} = 5V$
- High noise immunity:  $V_{NIH} = V_{NIL} = 28\% V_{CC}$  (Min)
- Power down protection is provided on all inputs
- Low power dissipation:  $I_{CC} = 4 \mu A$  (Max) @  $T_A = 25^{\circ}C$
- Pin and function compatible with 74HC374

### **Ordering Code:**

| Order Number | Package Number | Package Description                                                         |
|--------------|----------------|-----------------------------------------------------------------------------|
| 74VHC374M    | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| 74VHC374SJ   | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| 74VHC374MTC  | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| 74VHC374N    | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

### Logic Symbol



### **Connection Diagram**

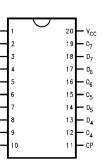
ŌĒ

00

Do

D

01


02

D<sub>2</sub>

D3

03

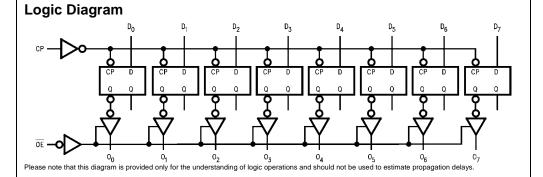
GND



**Pin Descriptions** 

| Pin Names                      | Description                 |
|--------------------------------|-----------------------------|
| D <sub>0</sub> -D <sub>7</sub> | Data Inputs                 |
| СР                             | Clock Pulse Input           |
| OE                             | 3-STATE Output Enable Input |
| O <sub>0</sub> O <sub>7</sub>  | 3-STATE Outputs             |

© 1999 Fairchild Semiconductor Corporation DS011538.prf


### **Functional Description**

The VHC374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the  $\overline{\text{OE}}$  is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flipflops.

### **Truth Table**

|                | Inputs |    | Outputs        |
|----------------|--------|----|----------------|
| D <sub>n</sub> | CP     | OE | O <sub>n</sub> |
| Н              | ~      | L  | Н              |
| L              | ~      | L  | L              |
| х              | Х      | н  | Z              |

H = HIGH Voltage Level L = LOW Voltage Level



## Absolute Maximum Ratings(Note 1)

| Supply Voltage (V <sub>CC</sub> )                  | -0.5V to +7.0V                  |
|----------------------------------------------------|---------------------------------|
| DC Input Voltage (VIN)                             | -0.5V to +7.0V                  |
| DC Output Voltage (V <sub>OUT</sub> )              | -0.5V to V <sub>CC</sub> + 0.5V |
| Input Diode Current (IIK)                          | –20 mA                          |
| Output Diode Current                               | ±20 mA                          |
| DC Output Current (I <sub>OUT</sub> )              | ±25 mA                          |
| DC V <sub>CC</sub> /GND Current (I <sub>CC</sub> ) | ±75 mA                          |
| Storage Temperature (T <sub>STG</sub> )            | -65°C to +150°C                 |
| Lead Temperature (T <sub>L</sub> )                 |                                 |
| (Soldering, 10 seconds)                            | 260°C                           |
|                                                    |                                 |

# **Recommended Operating** Conditions (Note 2)

| Supply Voltage (V <sub>CC</sub> )         | 2.0V to +5.5V                    |
|-------------------------------------------|----------------------------------|
| Input Voltage (V <sub>IN</sub> )          | 0V to +5.5V                      |
| Output Voltage (V <sub>OUT</sub> )        | 0V to V <sub>CC</sub>            |
| Operating Temperature (T <sub>OPR</sub> ) | $-40^{\circ}C$ to $+85^{\circ}C$ |
| Input Rise and Fall Time $(t_r, t_f)$     |                                  |
| $V_{CC}=3.3V\pm0.3V$                      | 0 ns/V – 100 ns/V                |
| $V_{CC}=5.0V\pm0.5V$                      | 0 ns/V – 20 ns/V                 |

0 ns/V – 20 ns/V

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifica-tions should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading vari-ables. Fairchild does not recommend operation outside databook specifica-tions tions.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

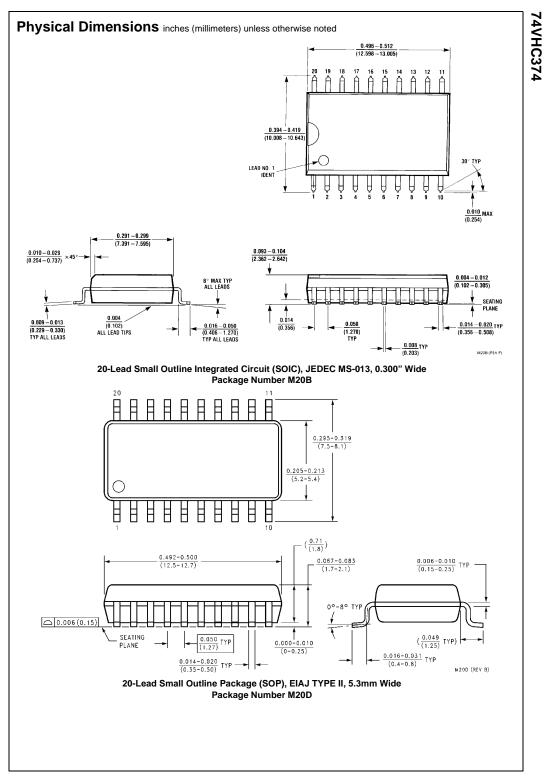
# **DC Electrical Characteristics**

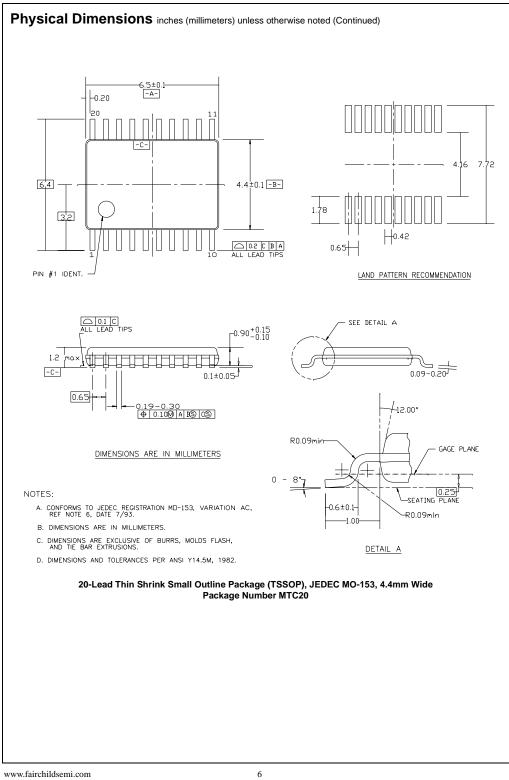
| Symbol                       | Parameter                                | V <sub>cc</sub>       | T <sub>A</sub> = 25°C |                 |                     | T <sub>A</sub> = -40°0 | C to +85°C          | Units                  | Conditions                            |                          |  |
|------------------------------|------------------------------------------|-----------------------|-----------------------|-----------------|---------------------|------------------------|---------------------|------------------------|---------------------------------------|--------------------------|--|
| Symbol                       |                                          | (V)                   | Min                   | Тур             | Max                 | Min                    | Max                 | Units                  | Con                                   | ultions                  |  |
| V <sub>IH</sub>              | HIGH Level Input                         | 2.0                   | 1.50                  |                 |                     | 1.50                   |                     | V                      |                                       |                          |  |
|                              | Voltage                                  | 3.0 - 5.5             | 0.7 V <sub>CC</sub>   |                 |                     | 0.7 V <sub>CC</sub>    |                     | v                      |                                       |                          |  |
| V <sub>IL</sub>              | LOW Level Input Voltage                  | 2.0                   |                       |                 | 0.50                | 1                      | 0.50                | V                      |                                       |                          |  |
|                              |                                          | 3.0 - 5.5             | i.                    |                 | 0.3 V <sub>CC</sub> |                        | 0.3 V <sub>CC</sub> | v                      |                                       |                          |  |
| V <sub>OH</sub>              | HIGH Level Output                        | 2.0                   | 1.9                   | 2.0             |                     | 1.9                    |                     |                        |                                       | $I_{OH} = -50 \ \mu A$   |  |
|                              | Voltage                                  | 3.0                   | 2.9                   | 3.0             |                     | 2.9                    |                     | V                      | or V <sub>IL</sub>                    |                          |  |
|                              |                                          | 4.5                   | 4.4                   | 4.5             |                     | 4.4                    |                     |                        |                                       |                          |  |
|                              |                                          | 3.0                   | 2.58                  |                 |                     | 2.48                   |                     | V                      |                                       | $I_{OH} = -4 \text{ mA}$ |  |
|                              |                                          | 4.5                   | 3.94                  |                 |                     | 3.80                   |                     | v                      |                                       | $I_{OH} = -8 \text{ mA}$ |  |
| V <sub>OL</sub>              | LOW Level Output                         | 2.0                   |                       | 0.0             | 0.1                 |                        | 0.1                 |                        | $V_{IN} = V_{IH}$                     | $I_{OL} = 50 \ \mu A$    |  |
|                              | Voltage                                  | 3.0                   | I.                    | 0.0             | 0.1                 |                        | 0.1                 | V                      | or V <sub>IL</sub>                    |                          |  |
|                              |                                          | 4.5                   | i.                    | 0.0             | 0.1                 |                        | 0.1                 |                        |                                       |                          |  |
|                              |                                          | 3.0                   |                       |                 | 0.36                |                        | 0.44                | V                      |                                       | $I_{OL} = 4 \text{ mA}$  |  |
|                              |                                          | 4.5                   | I.                    |                 | 0.36                |                        | 0.44                | v                      |                                       | $I_{OL} = 8 \text{ mA}$  |  |
| I <sub>OZ</sub>              | 3-STATE Output                           | 5.5                   |                       |                 | ±0.25               |                        | ±2.5                | μA                     | V <sub>IN</sub> = V <sub>IH</sub> o   | r V <sub>IL</sub>        |  |
|                              | Off-State Current                        |                       | 1                     |                 |                     |                        |                     |                        | $V_{OUT} = V_{CC} \text{ or } GND$    |                          |  |
| I <sub>IN</sub>              | Input Leakage Current                    | 0 - 5.5               | 1                     |                 | ±0.1                |                        | ±1.0                | μA                     | $\mu$ A V <sub>IN</sub> = 5.5V or GND |                          |  |
| I <sub>CC</sub>              | Quiescent Supply Current                 | 5.5                   | 1                     |                 | 4.0                 |                        | 40.0                | μΑ                     | $V_{IN} = V_{CC}$                     | or GND                   |  |
| Noise                        | Characteristic                           |                       |                       | V <sub>cc</sub> | T <sub>A</sub> =    | = 25°C                 | Units               |                        | Conditi                               | ions                     |  |
| Symbol                       | raiamen                                  | 61                    |                       | (V)             | Тур                 | Limits                 | Unito               |                        | Conditi                               | 0115                     |  |
| V <sub>OLP</sub><br>(Note 3) | Quiet Output Maximum Dyr                 | namic V <sub>OL</sub> |                       | 5.0             | 0.6                 | 0.9                    | V                   | C <sub>L</sub> =       | 50 pF                                 |                          |  |
| V <sub>OLV</sub><br>(Note 3) | Quiet Output Minimum Dyn                 | amic V <sub>OL</sub>  |                       | 5.0             | -0.6                | -0.9                   | V                   | C <sub>L</sub> = 5     | 50 pF                                 |                          |  |
| V <sub>IHD</sub><br>Note 3)  | Minimum HIGH Level Dynamic Input Voltage |                       | /oltage               | 5.0             |                     | 3.5                    | V                   | $C_L = 50 \text{ pF}$  |                                       |                          |  |
|                              | Maximum LOW Level Dynamic Input Voltage  |                       |                       | 5.0             |                     | 1.5                    | V                   | C <sub>L</sub> = 50 pF |                                       |                          |  |

74VHC374

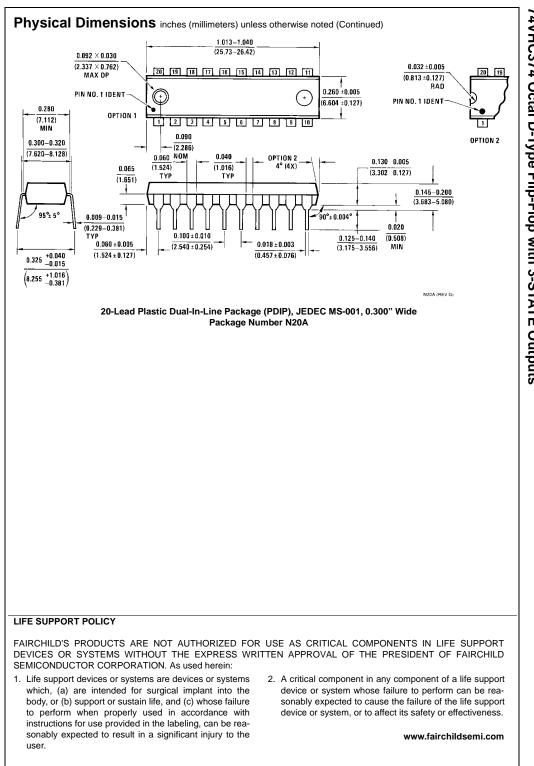
| 4      |
|--------|
| ~      |
| ŝ      |
| C      |
| Ť      |
| ÷      |
| 2      |
| 4      |
| $\sim$ |

# **AC Electrical Characteristics**


| Symbol            | Parameter               | v <sub>cc</sub>               | T <sub>A</sub> = 25°C |      |      | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |      | Units  | Conditions             |                         |
|-------------------|-------------------------|-------------------------------|-----------------------|------|------|-----------------------------------------------|------|--------|------------------------|-------------------------|
| -,                |                         | (V)                           | Min                   | Тур  | Max  | Min                                           | Max  | onita  |                        |                         |
| t <sub>PLH</sub>  | Propagation Delay Time  | $3.3\pm0.3$                   |                       | 8.1  | 12.7 | 1.0                                           | 15.0 | ns     |                        | $C_{L} = 15  pF$        |
| t <sub>PHL</sub>  | (CP to O <sub>n</sub> ) | l T                           |                       | 10.6 | 16.2 | 1.0                                           | 18.5 | 113    |                        | $C_{L} = 50 \text{ pH}$ |
|                   |                         | $5.0\pm0.5$                   |                       | 5.4  | 8.1  | 1.0                                           | 9.5  | ns     | 1                      | C <sub>L</sub> = 15 pF  |
|                   |                         |                               |                       | 6.9  | 10.1 | 1.0                                           | 11.5 | 115    |                        | $C_{L} = 50 \text{ pF}$ |
| t <sub>PZL</sub>  | 3-STATE Output          | $\textbf{3.3}\pm\textbf{0.3}$ |                       | 7.1  | 11.0 | 1.0                                           | 13.0 | ns     | $R_L = 1 k\Omega$      | C <sub>L</sub> = 15 pF  |
| t <sub>PZH</sub>  | Enable Time             |                               |                       | 9.6  | 14.5 | 1.0                                           | 16.5 | 115    |                        | $C_L = 50 \text{ pF}$   |
|                   |                         | $5.0\pm0.5$                   |                       | 5.1  | 7.6  | 1.0                                           | 9.0  | ns     | 1                      | C <sub>L</sub> = 15 pF  |
|                   |                         |                               |                       | 6.6  | 9.6  | 1.0                                           | 11.0 | 115    |                        | $C_L = 50 \text{ pF}$   |
| t <sub>PLZ</sub>  | 3-STATE Output          | $\textbf{3.3}\pm\textbf{0.3}$ |                       | 10.2 | 14.0 | 1.0                                           | 16.0 | ns     | $R_L = 1 k\Omega$      | $C_L = 50 \text{ pF}$   |
| t <sub>PHZ</sub>  | Disable Time            | $5.0\pm0.5$                   |                       | 6.1  | 8.8  | 1.0                                           | 10.0 | 115    |                        | $C_L = 50 \text{ pF}$   |
| t <sub>OSLH</sub> | Output to Output Skew   | $\textbf{3.3}\pm\textbf{0.3}$ |                       |      | 1.5  |                                               | 1.5  | ns     | (Note 4)               | $C_L = 50 \text{ pF}$   |
| t <sub>OSHL</sub> |                         | $5.0\pm0.5$                   |                       |      | 1.0  |                                               | 1.0  | 115    |                        | $C_L = 50 \text{ pF}$   |
| f <sub>MAX</sub>  | Maximum Clock Frequency | $3.3\pm0.3$                   | 80                    | 130  |      | 70                                            |      |        |                        | C <sub>L</sub> = 15 pF  |
|                   |                         |                               | 55                    | 85   |      | 50                                            |      | MHz    |                        | $C_L = 50 \text{ pF}$   |
|                   |                         | $5.0\pm0.5$                   | 130                   | 185  |      | 110                                           |      | IVITIZ |                        | $C_L = 15 \text{ pF}$   |
|                   |                         |                               | 85                    | 120  |      | 75                                            |      |        |                        | $C_L = 50 \text{ pF}$   |
| CIN               | Input Capacitance       |                               |                       | 4    | 10   |                                               | 10   | pF     | V <sub>CC</sub> = Oper | n<br>n                  |
| COUT              | Output Capacitance      |                               |                       | 6    |      |                                               |      | pF     | $V_{CC} = 5.0V$        |                         |
| C <sub>PD</sub>   | Power Dissipation       |                               |                       | 32   |      |                                               |      | pF     | (Note 5)               |                         |
|                   | Capacitance             |                               |                       |      |      |                                               |      |        |                        |                         |


 $\textbf{Note 4:} Parameter guaranteed by design. t_{OSLH} = |t_{PLH \ max} - t_{PLH \ min}|; t_{OSHL} = |t_{PHL \ max} - t_{PHL \ min}|$ 

Note 5:  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC}$  (opr.) =  $C_{PD} * V_{CC} * f_{IN} + I_{CC}/8$  (per F/F). The total  $C_{PD}$  when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation:  $C_{PD}$  (total) = 20 + 12n.


# **AC Operating Requirements**

| Symbol             | Parameter                | V <sub>cc</sub><br>(V) | T <sub>A</sub> = 25°C |     |     | $T_A = -40^\circ C \text{ to } +85^\circ C$ |     | Units |
|--------------------|--------------------------|------------------------|-----------------------|-----|-----|---------------------------------------------|-----|-------|
|                    |                          |                        | Min                   | Тур | Max | Min                                         | Max | Units |
| t <sub>W</sub> (H) | Minimum Pulse Width (CP) | $3.3\pm0.3$            | 5.0                   |     |     | 5.5                                         |     | ns    |
| t <sub>W</sub> (L) |                          | $5.0\pm0.5$            | 5.0                   |     |     | 5.0                                         |     | 115   |
| t <sub>S</sub>     | Minimum Set-Up Time      | $3.3\pm0.3$            | 4.5                   |     |     | 4.5                                         |     | ns    |
|                    |                          | $5.0\pm0.5$            | 3.0                   |     |     | 3.0                                         |     | 115   |
| t <sub>H</sub>     | Minimum Hold Time        | $3.3\pm0.3$            | 2.0                   |     |     | 2.0                                         |     | ns    |
|                    |                          | $5.0\pm0.5$            | 2.0                   |     |     | 2.0                                         |     |       |





74VHC374



Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

# 74VHC374 Octal D-Type Flip-Flop with 3-STATE Outputs