

Absolute Maximum Ratings(Note 1 (Note 2)

Supply Voltage (V_{CC})
DC Control Input Voltage ($\mathrm{V}_{\text {IN }}$)
DC Switch I/O Voltage (V_{IO})
Clamp Diode Current ($\mathrm{I}_{\mathrm{K}}, \mathrm{I}_{\mathrm{OK}}$) DC Output Current, per pin (IOUT) DC V_{CC} or GND Current, per pin (lcc)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
-1.5 to $V_{C C}+1.5 \mathrm{~V}$
$V_{E E}-0.5$ to $V_{C C}+0.5 \mathrm{~V}$ $\pm 20 \mathrm{~mA}$ $\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) (Note 3)
S.O. Package only

Lead Temperature (T_{L})
(Soldering 10 seconds)

600 mW 500 mW

Recommended Operating

 Conditions
Supply Voltage (V_{CC})

Min Max Units
($\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$)
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40 \quad+85 \quad{ }^{\circ} \mathrm{C}$ Input Rise or Fall Times (t_{r}, t_{f})

$V_{C C}=2.0 \mathrm{~V}$	1000	ns
$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	500	ns
$\mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	400	ns

Note 1: Absolute Maximum Ratings are those values beyond which dam age to the device may occur.
-
No 3: Power Dipa Note 3: Power Dissipation temperature derating - plastic " N " package: $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	Units				
				Typ	Gua	teed Limits					
V_{IH}	Minimum HIGH Level		2.0 V		1.5	1.5	V				
	Input Voltage		4.5 V		3.15	3.15	V				
			9.0 V		6.3	5.3	V				
			12.0 V		8.4	8.4	V				
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage		2.0 V		0.5	0.5	V				
			4.5 V		1.35	1.35	V				
			9.0 V		2.7	2.7	V				
			12.0 V		3.6	3.6	V				
R_{ON}	Maximum "ON" Resistance See (Note 5)	$\mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA}$		100	170	200	Ω				
		$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ to GND	9.0 V	50	85	105	Ω				
		(Figure 1)	12.0 V	30	70	85	Ω				
			2.0 V	120	180	215	Ω				
		$\mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA}$	4.5 V	50	80	100	Ω				
		$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	9.0 V	35	60	75	Ω				
		(Figure 1)	12.0 V	20	40	60	Ω				
R_{ON}	Maximum "ON" Resistance Matching	$\mathrm{V}_{\text {CTL }}=\mathrm{V}_{\mathrm{IH}}$	4.5 V	10	15	20	Ω				
		$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ to GND	9.0 V	5	10	15	Ω				
			12.0 V	5	10	15	Ω				
$\overline{I_{\mathrm{IN}}}$	Maximum Control Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND			± 0.05	± 0.5	$\mu \mathrm{A}$				
		$\mathrm{V}_{\mathrm{CC}}=2-6 \mathrm{~V}$									
$\overline{I Z}$	Maximum Switch "OFF" Leakage Current	$\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V	10	± 60	± 600	nA				
		$V_{\text {IS }}=$ GND or $\mathrm{V}_{\text {CC }}$	9.0 V	15	± 80	± 800	nA				
		$\mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\text {IL }}$ (Figure 2)	12.0 V	20	± 100	± 1000	nA				
$\overline{I Z}$	Maximum Switch "ON" Leakage Current	$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ to GND	6.0 V	10	± 40	± 150	nA				
		$\mathrm{V}_{\text {CTL }}=\mathrm{V}_{\mathrm{IH}}$	9.0 V	15	± 50	± 200	nA				
		$\mathrm{V}_{\text {OS }}=$ OPEN (Figure 3)	12.0 V	20	± 60	± 300	nA				
I_{CC}	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0 V		1.0	10	$\mu \mathrm{A}$				
		$\mathrm{I}_{\text {OUT }}=0 \mu \mathrm{~A}$	9.0 V		2.0	20	A				
			12.0 V		4.0	40	$\mu \mathrm{A}$				
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistance (R_{ON}) occurs for VHC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case $\mathrm{V}_{I H}$ and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. ($\mathrm{The} \mathrm{V}_{I H}$ value at 5.5 V is 3.85 V .) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5 V values should be used. Note 5: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$) approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.											

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V} \mathrm{~V}_{\mathrm{FE}}=0 \mathrm{~V}-12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

Note 6: Adjust 0 dBm for $\mathrm{F}=1 \mathrm{kHz}$ (Null $\mathrm{R}_{\mathrm{L}} / \mathrm{R}_{\mathrm{ON}}$ Attenuation).
Note 7: $\mathrm{V}_{\text {IS }}$ is centered at $\mathrm{V}_{\mathrm{CC}} / 2$.
Note 8: Adjust input for 0 dBm .

AC Test Circuits and Switching Time Waveforms (Continued)

Crosstalk and Distortion Test Circuits

$v_{15(1)}$

FIGURE 9. Crosstalk Between Any Two Switches

Crosstalk and Distortion Test Circuits (Continued)

FIGURE 10. Switch OFF Signal Feedthrough Īsolation

Typical Performance Characteristics

Typical Crosstalk Between

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch input pins, the voltage drop across the switch must not exceed 0.6 V (calculated from the ON resistance).

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
