

October 1987 Revised January 1999

CD4014BC 8-Stage Static Shift Register

General Description

The CD4014BC is an 8-stage parallel input/serial output shift register. A parallel/serial control input enables individual JAM inputs to each of 8 stages. Q outputs are available from the sixth, seventh and eighth stages. All outputs have equal source and sink current capabilities and conform to standard "B" series output drive.

When the parallel/serial control input is in the logical "0" state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/ serial control input is in the logical "1" state, data is jammed into each stage of the register synchronously with the positive transition of the clock.

All inputs are protected against static discharge with diodes to $\rm V_{DD}$ and $\rm V_{SS}.$

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- 5V-10V-15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage:

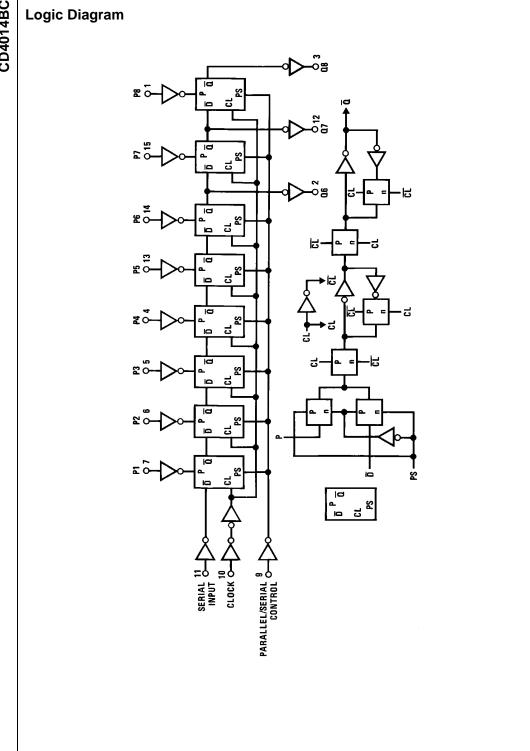
 $1 \,\mu\text{A}$ at 15V over full temperature range

Ordering Code:

Order Number	Package Number	Package Description
CD4014BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4014BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "x" to the ordering code.

Connection Diagram



Truth Table

CL (Note 1)	Serial Input	Parallel/ Serial Control	PI 1	Pln	Q1 (Internal)	Q_n
~	Х	1	0	0	0	0
~	Х	1	1	0	1	0
~	Χ	1	0	1	0	1
~	Х	1	1	1	1	1
~	0	0	Х	Х	0	\boldsymbol{Q}_{n-1}
~	1	0	Х	Х		\boldsymbol{Q}_{n-1}
~	Х	Х	Х	Х	Q1	Q_n

X = Don't care case No Change

Note 1: Level change

Absolute Maximum Ratings(Note 2)

(Note 3)

 $\begin{tabular}{ll} Supply Voltage (V_{DD}) & -0.5V to +18V \\ Input Voltage (V_{IN}) & -0.5 to V_{DD} + 0.5V \\ Storage Temperature Range (T_S) & -65 ^{\circ}C to +150 ^{\circ}C \\ \end{tabular}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 3)

 $\label{eq:Supply Voltage VDD} \text{Supply Voltage (V}_{\text{DD}}) \qquad \qquad 3.0 \text{V to 15V} \\ \text{Input Voltage (V}_{\text{IN}}) \qquad \qquad 0 \text{ to V}_{\text{DD}}$

Operating Temperature Range (T_A)

-40°C to +85°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 3: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

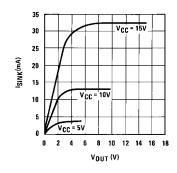
Symbol	Parameter	Conditions		-40°C		+25°C			+85°C		Units
Symbol	Farameter	Con	ditions	Min	Max	Min	Тур	Max	Min	Max	Ullits
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = 7$	V _{DD} or V _{SS}		20		0.1	20		150	μА
	Current	$V_{DD} = 10V, V_{IN} =$	V _{DD} or V _{SS}		40		0.2	40		300	μΑ
		$V_{DD} = 15V, V_{IN} =$	V _{DD} or V _{SS}		80		0.3	80		600	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$			0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$	$ I_O <1~\mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$			0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5V$		4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	$ I_O < 1 \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$		14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0$).5V or 4.5V		1.5		2	1.5		1.5	٧
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$			3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_O =$	1.5V or 13.5V		4.0		6	4.0		4.0	V
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0$	0.5V or 4.5V	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_O =$	1.5V or 13.5V	11.0		11.0	9		11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$		0.52		0.44	0.88		0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$		1.3		1.1	2.2		0.9		mA
		$V_{DD} = 15V, V_O =$	1.5V	3.6		3.0	8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$		-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$		-1.3		-1.1	-2.2		-0.90		mA
		$V_{DD} = 15V, V_O =$	13.5V	-3.6		-3.0	-8		-2.4		mA
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} =	: 0V		-0.3		-10 ⁻⁵	-0.3		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} =$	15V		0.3		10 ⁻⁵	0.3		1.0	μΑ

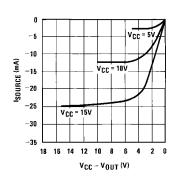
3

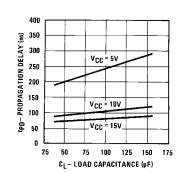
Note 4: I_{OL} and I_{OH} are tested one output at a time.

AC Electrical Characteristics (Note 5) $T_A = 25$ °C, input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		200	320	ns
		$V_{DD} = 10V$		80	160	ns
		$V_{DD} = 15V$		60	120	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2.8	4		MHz
	Input Frequency	$V_{DD} = 10V$	6	12		MHz
		$V_{DD} = 15V$	8	16		MHz
t _W	Minimum Clock	$V_{DD} = 5V$		90	180	ns
	Pulse Width	V _{DD} = 10V		40	80	ns
		$V_{DD} = 15V$		25	50	ns
t _{rCL} , t _{fCL}	Clock Rise and	$V_{DD} = 5V$			15	μs
	Fall Time (Note 6)	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	μs
t _S	Minimum Set-Up Time	$V_{DD} = 5V$		60	120	ns
	(Note 7) Serial Input	$V_{DD} = 10V$		40	80	ns
	$t_H \ge 200 \text{ ns}$	$V_{DD} = 15V$		30	60	ns
	Parallel Inputs	$V_{DD} = 5V$		80	160	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		40	80	ns
		$V_{DD} = 15V$		30	60	ns
	Parallel/Serial Control	$V_{DD} = 5V$		100	200	ns
	t _H ≥ 200 ns	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _H	Minimum Hold Time	$V_{DD} = 5V$			0	ns
	Serial In, Parallel In, $t_S \ge 400 \text{ ns}$	$V_{DD} = 10V$			10	ns
	Parallel/Serial Control	V _{DD} = 15V			15	ns
Cı	Average Input Capacitance	Any Input		5	7.5	pF
•	(Note 8)					
C _{PD}	Power Dissipation Capacitance			110		pF
	(Note 8)					

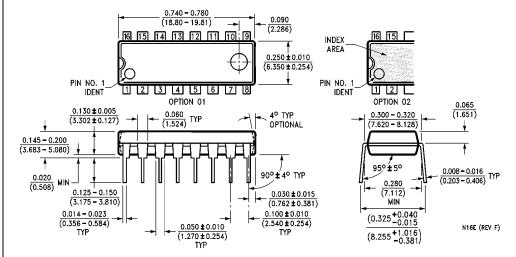

Note 5: AC Parameters are guaranteed by DC correlated testing.


Note 6: If more than one unit is cascaded t_{rCL} should be made less than or equal to the fixed propagation delay of the output of the driving stage for the estimated capacitive load.


Note 7: Setup times are measured with reference to clock and a fixed hold time (t_H) as specified.

Note 8: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C family characteristics application note AN-90.

Typical Performance Characteristics



16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com