

Absolute Maximum Ratings(Note 1)
(Note 2)
DC Supply Voltage (V_{DD})
Input Voltage (V_{IN})
Storage Temperature Range (T_{S})
Power Dissipation (P_{D})
Dual-In-Line
Small Outline
Lead Temperature
(Soldering, 10 seconds) (T_{L})
-0.5 to $+18 \mathrm{~V}_{\mathrm{DC}}$
-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

700 mW 500 mW

000

Recommended Operating

 Conditions (Note 1)$\begin{array}{lr}\mathrm{DC} \text { Supply Voltage }\left(\mathrm{V}_{\mathrm{DD}}\right) & +3 \text { to }+15 \mathrm{~V}_{\mathrm{DC}} \\ \text { Input Voltage }\left(\mathrm{V}_{\mathrm{IN}}\right) & 0 \text { to } \mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}\end{array}$
Operating Temperature Range (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation. Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			${ }^{+85^{\circ} \mathrm{C}}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\overline{\mathrm{ID}}$	Quiescent Device Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		20		0.3	20		150	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		40		0.5	40		300	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$		60		0.7	80		600	$\mu \mathrm{A}$
$\overline{\mathrm{V}_{\mathrm{OL}}}$	LOW Level Output Voltage	\|lol<1 $\mu \mathrm{A}$								
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage	\|lol $<1 \mu \mathrm{~A}$								
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage	\|lol<1 $\mu \mathrm{A}$								
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	v
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}$ or 9.0 V		3.0		4	3.0		3.0	v
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	v
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	\|lol< $\mu \mathrm{A}$								
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		v
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0	6		7.0		v
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9		11.0		V
${ }_{\text {OL }}$	LOW Level Output Current (Note 3)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA
IOH	HIGH Level Output Current (Note 3)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA
$\overline{\mathrm{I}_{\mathrm{N}}}$	Input Current	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.30		-10-5	-0.30		-1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.30		10^{-5}	0.30		1.0	$\mu \mathrm{A}$

Note 3: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 4)$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}} \text { and } \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \text { unless otherwise specified }$						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PHL }}$ t PLLH	Propagation Delay Time to Q1 Output	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 185 \\ & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t }}^{\text {THL }}$, $\mathrm{T}_{\text {TLH }}$	Transition Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{t_{W L}, t_{W H}}$	Minimum Input Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 75 \\ & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 200 \\ & 110 \\ & 90 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {RCL }} \mathrm{t}_{\text {FCL }}$	Input Rise and Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$			$\begin{gathered} \hline 15 \\ 10 \\ 8 \end{gathered}$	$\begin{aligned} & \hline \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
f_{CL}	Maximum Input Pulse Frequency	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.5 \\ 4 \\ 5 \end{gathered}$	$\begin{gathered} \hline 5 \\ 12 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Reset Propagation Delay Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 185 \\ & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
twh	Reset Minimum Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 185 \\ & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & 350 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance (Note 5)	Any Input		5	7.5	pF
Note 4: AC Parameters are guaranteed by DC correlated testing. Note 5: Capacitance is guaranteed by periodic testing.						

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
