FAIRCHILD

BEMICONDUCTOR

CD4047BC Low Power Monostable/Astable Multivibrator

General Description

The CD4047B is capable of operating in either the monostable or astable mode. It requires an external capacitor (between pins 1 and 3) and an external resistor (between pins 2 and 3) to determine the output pulse width in the monostable mode, and the output frequency in the astable mode.

Astable operation is enabled by a high level on the astable input or low level on the astable input. The output frequency (at 50% duty cycle) at Q and \overline{Q} outputs is determined by the timing components. A frequency twice that of Q is available at the Oscillator Output; a 50% duty cycle is not guaranteed.

Monostable operation is obtained when the device is triggered by LOW-to-HIGH transition at + trigger input or HIGH-to-LOW transition at - trigger input. The device can be retriggered by applying a simultaneous LOW-to-HIGH transition to both the + trigger and retrigger inputs.

A high level on Reset input resets the outputs Q to LOW, $\overline{\mathsf{Q}}$ to HIGH.

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS

SPECIAL FEATURES

- Low power consumption: special CMOS oscillator configuration
- Monostable (one-shot) or astable (free-running) operation

True and complemented buffered outputsOnly one external R and C required

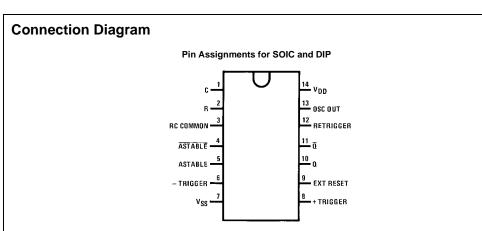
MONOSTABLE MULTIVIBRATOR FEATURES

October 1987

Revised May 1999

- Positive- or negative-edge trigger
- Output pulse width independent of trigger pulse duration
- Retriggerable option for pulse width expansion
- Long pulse widths possible using small RC components by means of external counter provision
- Fast recovery time essentially independent of pulse width
- Pulse-width accuracy maintained at duty cycles approaching 100%

ASTABLE MULTIVIBRATOR FEATURES


- Free-running or gatable operating modes
- 50% duty cycle
- Oscillator output available
- Good astable frequency stability typical= $\pm 2\% + 0.03\%^{\circ}$ C @ 100 kHz frequency= $\pm 0.5\% + 0.015\%^{\circ}$ C @ 10 kHz deviation (circuits trimmed to frequency V_{DD} = 10V $\pm 10\%$)

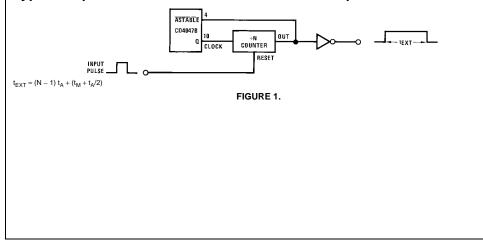
Applications

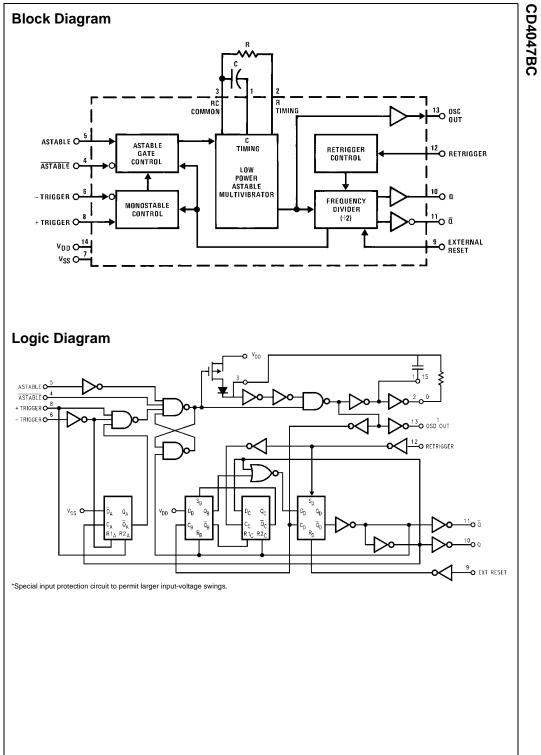
- Frequency discriminators
- Timing circuits
- Time-delay applications
- Envelope detection
- Frequency multiplication
- Frequency division

Ordering Code:

Order Number	Package Number	Package Description
CD4047BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
CD4047BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Top View


Function Table


CD4047BC

	Ter	minal Connecti	ons	Output Pulse	Typical Output
Function	To V _{DD}	To V _{SS}	Input Pulse	From	Period or
			То		Pulse Width
Astable Multivibrator					
Free-Running	4, 5, 6, 14	7, 8, 9, 12		10, 11, 13	t _A (10, 11) = 4.40 RC
True Gating	4, 6, 14	7, 8, 9, 12	5	10, 11, 13	t _A (13) = 2.20 RC
Complement Gating	6, 14	5, 7, 8, 9, 12	4	10, 11, 13	
Monostable Multivibrator					
Positive-Edge Trigger	4, 14	5, 6, 7, 9, 12	8	10, 11	
Negative-Edge Trigger	4, 8, 14	5, 7, 9, 12	6	10, 11	t _M (10, 11) = 2.48 RC
Retriggerable	4, 14	5, 6, 7, 9	8, 12	10, 11	
External Countdown (Note 1)	14	5, 6, 7, 8, 9, 12	Figure 1	Figure 1	Figure 1

Note 1: External resistor between terminals 2 and 3. External capacitor between terminals 1 and 3.

Typical Implementation of External Countdown Option

Absolute Maximum Ratings(Note 2) (Note 3)

DC Supply Voltage (V _{DD})	-0.5V to +18V _{DC}
Input Voltage (V _{IN})	–0.5V to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 3)

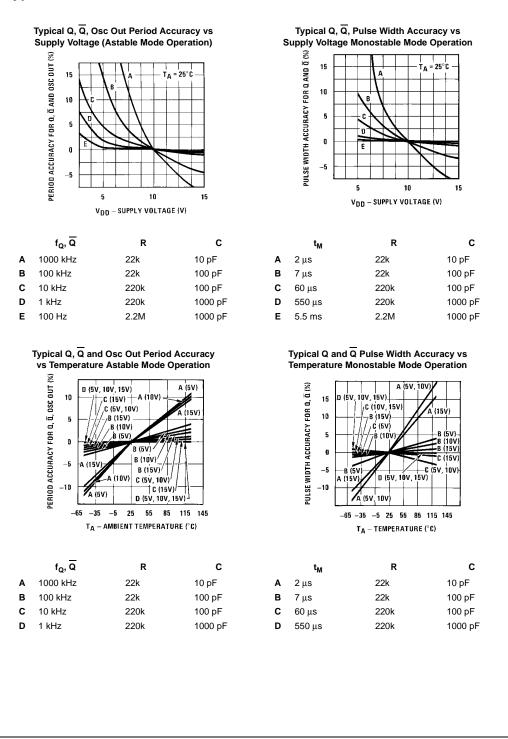
DC Supply Voltage (V _{DD})	3V to 15V _{DC}
Input Voltage (V _{IN})	0 to V _{DD} V _{DC}
Operating Temperature Range (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Note 2: "Absolute Maximum Ratings" are those safety of the device cannot be guaranteed. The	

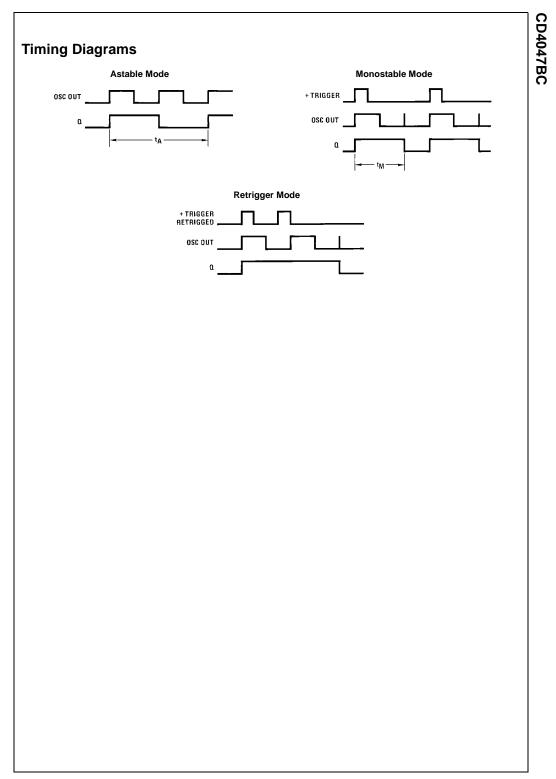
safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

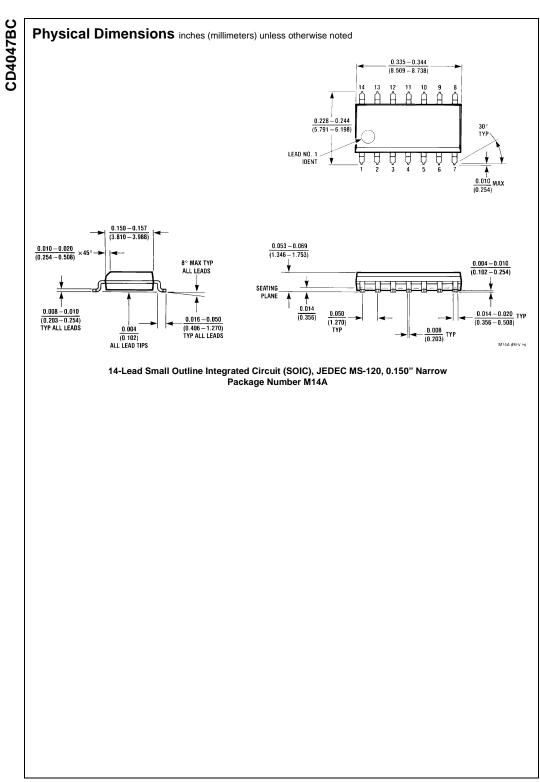
Note 3: $V_{SS} = 0V$ unless otherwise specified.

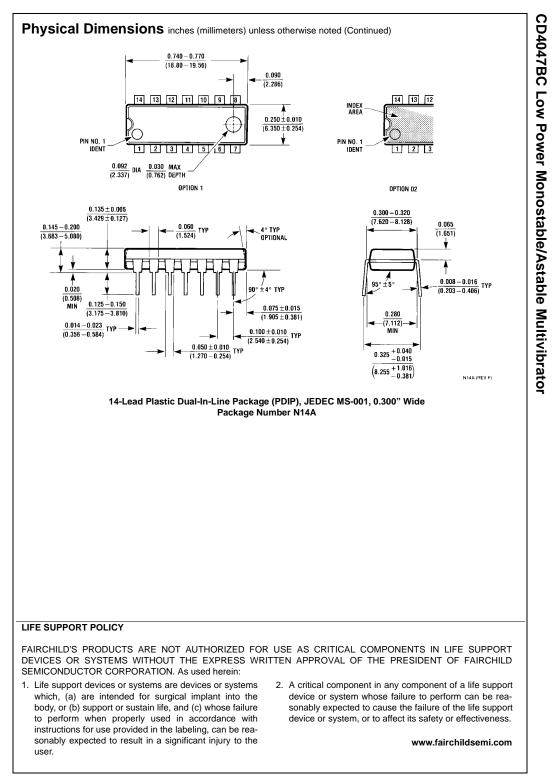
DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	-4	D°C		25°C		85	°C	Units
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		20			20		150	μΑ
		$V_{DD} = 10V$		40			40		300	μΑ
		$V_{DD} = 15V$		80			80		600	μΑ
V _{OL}	LOW Level Output Voltage	I _O < 1 μA								
		$V_{DD} = 5V$		0.05		0	0.05		0.05	v
		$V_{DD} = 10V$		0.05		0	0.05		0.05	v
		$V_{DD} = 15V$		0.05		0	0.05		0.05	v
V _{OH}	HIGH Level Output Voltage	I _O < 1 μA								
		$V_{DD} = 5V$	4.95		4.95	5		4.95		v
		$V_{DD} = 10V$	9.95		9.95	10		9.95		v
		$V_{DD} = 15V$	14.95		14.95	15		14.95		v
VIL	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	V
		$V_{DD} = 10V$, $V_O = 1V$ or $9V$		3.0		4.5	3.0		3.0	v
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6.75	4.0		4.0	V
VIH	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		V
		$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		V
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μΑ


Note 4: I_{OH} and I_{OL} are tested one output at a time.


Symbol Parameter Conditions Min Typ Max ip_{HL} , ip_{LH} Propagation Delay Time Astable, Astable to Osc Out $V_{DD} = 5V$ 200 400 $V_{DD} = 10V$ $V_{DD} = 10V$ $V_{DD} = 15V$ 80 160 ip_{HL} , ip_{LH} Astable, Astable to Q, \overline{Q} $V_{DD} = 5V$ 550 900 $V_{DD} = 10V$ 200 400 $V_{DD} = 10V$ 200 400 ip_{HL} , ip_{LH} + Trigger, - Trigger to \overline{Q} $V_{DD} = 5V$ 700 1200 $V_{DD} = 10V$ 200 400 $V_{DD} = 10V$ 300 600 $v_{DD} = 15V$ $V_{DD} = 10V$ 200 480 160 1200 $v_{DD} = 15V$ $V_{DD} = 10V$ 300 600 1200 1200 1200 1200 150 250 150 250 150 250 150 250 150 250 150 250 150 250 150 250 150 250 150 250 100 200 <th>Units NS NS NS NS NS NS NS NS NS NS</th>	Units NS NS NS NS NS NS NS NS NS NS
$ \frac{\overline{Astable to Osc Out}}{PHL \cdot t_{PLH}} = \frac{Astable, \overline{Astable to Q, Q}}{PHL \cdot t_{PLH}} = \frac{Trigger, - Trigger to \overline{Q}}{PHL \cdot t_{PLH}} = \frac{Trigger, Retrigger to \overline{Q}}{PHL \cdot t_{PLH}} = \frac{PHL \cdot t_{PLH}}{PHL \cdot t_{PLH}} = \frac{Trigger, Retrigger to \overline{Q}}{PHL \cdot t_{PLH}} = \frac{PHL \cdot t_{PLH}}{PHL \cdot t_{PL}} = \frac{PHL \cdot t_{PLH}}{PHL \cdot t_{PL}} = \frac{PHL \cdot t_{PL}}{PHL \cdot t_{PL}} = \frac{PHL \cdot t_{PL}}{PHL \cdot $	ns ns ns ns ns ns ns ns ns ns ns ns ns
VDD = 15V 80 160 HL. t_{PLH} Astable, $\overline{Astable}$ to Q, \overline{Q} $V_{DD} = 5V$ 550 900 $V_{DD} = 10V$ $V_{DD} = 10V$ 250 500 $V_{DD} = 15V$ 200 400 HL. t_{PLH} + Trigger, - Trigger to \overline{Q} $V_{DD} = 5V$ 700 1200 $V_{DD} = 15V$ $V_{DD} = 10V$ 300 600 $V_{DD} = 15V$ 240 480 HL. t_{PLH} + Trigger, Retrigger to \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 250 250 HL. t_{PLH} + Trigger, Retrigger to \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 150 250 HL. t_{PLH} Reset to Q, \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 150 250 HL. t_{PLH} Reset to Q, \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 10V$ 125 250 $V_{DD} = 15V$ 00 125 250 100 200 200 200 200 200	ns ns ns ns ns ns ns ns ns
PHL- tPLH Astable, $\overline{Astable}$ to Q, \overline{Q} $V_{DD} = 5V$ 550 900 $V_{DD} = 10V$ $V_{DD} = 10V$ 250 500 $V_{DD} = 15V$ 200 400 PHL- tPLH + Trigger, - Trigger to \overline{Q} $V_{DD} = 5V$ 700 1200 $V_{DD} = 15V$ $V_{DD} = 10V$ 300 600 $V_{DD} = 15V$ 240 480 PHL- tPLH + Trigger, Retrigger to \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 240 480 175 300 PHL- tPLH + Trigger, Retrigger to \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 150 250 250 PHL- tPLH Reset to Q, \overline{Q} $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 150 250 250 250 PHL- tPLH Reset to Q, \overline{Q} $V_{DD} = 5V$ 300 600 200 $V_{DD} = 15V$ 125 250 100 200 200 200 200 200 <t< td=""><td>ns ns ns ns ns ns ns ns ns</td></t<>	ns ns ns ns ns ns ns ns ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns ns ns ns ns ns ns ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns ns ns ns ns ns ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns ns ns ns ns ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns ns ns ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns ns ns ns
$\begin{array}{c c} & + \mbox{ Trigger, Retrigger to } \overline{Q} & V_{DD} = 5V & 300 & 600 \\ & V_{DD} = 10V & 175 & 300 \\ V_{DD} = 15V & 150 & 250 \\ \hline PHL \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ns ns
NL 1 Li OS 7 N 00 N N $V_{DD} = 10V$ 175 300 $V_{DD} = 15V$ 150 250 PHL- ¹ PLH Reset to Q, Q $V_{DD} = 5V$ 300 600 $V_{DD} = 15V$ 125 250 $V_{DD} = 15V$ 100 200	ns
V _{DD} = 15V 150 250 V _{HL} , t _{PLH} Reset to Q, \overline{Q} V _{DD} = 5V 300 600 V _{DD} = 10V 125 250 V _{DD} = 15V 100 200	ns
PHL ¹ tPLH Reset to Q, \overline{Q} V _{DD} = 5V 300 600 V _{DD} = 10V 125 250 V _{DD} = 15V 100 200	
$V_{DD} = 10V 125 250 V_{DD} = 15V 100 200$	ns
V _{DD} = 15V 100 200	ns
	ns
HL, TLH Hansuon hine Q, Q, Osc Out bb	ns
V _{DD} = 10V 50 100	ns
$V_{DD} = 15V$ 40 80	ns
ML, t _{WH} Minimum Input Pulse Duration Any Input	
V _{DD} = 5V 500 1000	ns
V _{DD} = 10V 200 400	ns
V _{DD} = 15V 160 320	ns
CL, t _{FCL} + Trigger, Retrigger, Rise and V _{DD} = 5V 15	μs
Fall Time V _{DD} = 10V 5	μs
V _{DD} = 15V 5	μs
CIN Average Input Capacitance Any Input 5 7.5	pF
C _{IN} Average Input Capacitance Any Input 5 7.5 Note 5: AC Parameters are guaranteed by DC correlated testing.	pF


CD4047BC



Typical Performance Characteristics

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.