FAIRCHILD

SEMICONDUCTOR

October 1987 Revised January 1999

CD4071BC • CD4081BC Quad 2-Input OR Buffered B Series Gate • Quad 2-Input AND Buffered B Series Gate

General Description

The CD4071BC and CD4081BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs protected against static discharge with diodes to $\rm V_{DD}$ and $\rm V_{SS}.$

Ordering Code:

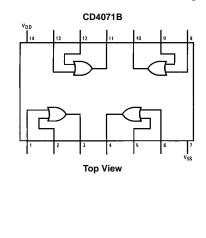
M14A	
1011-473	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
	M14A

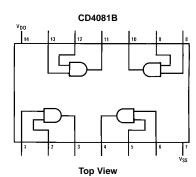
Features

Low power TTL compatibility:

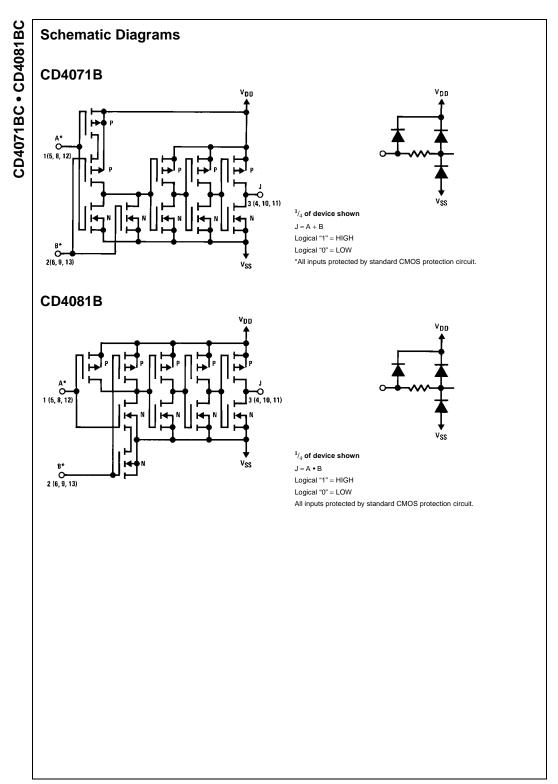
temperature range

■ 5V–10V–15V parametric ratings


Symmetrical output characteristics


Fan out of 2 driving 74L or 1 driving 74LS

■ Maximum input leakage 1 µA at 15V over full


Pin Assignments for DIP and SOIC

CD4071BC • CD4081BC Quad 2-Input OR Buffered B Series Gate • Quad 2-Input AND Buffered B Series Gate

© 1999 Fairchild Semiconductor Corporation DS005977.prf

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended	Operating
Conditions	

Voltage at Any Pin	–0.5V to V _{DD} +0.5V
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
V _{DD} Range	–0.5 V_{DC} to +18 V_{DC}
Storage Temperature (T _S)	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

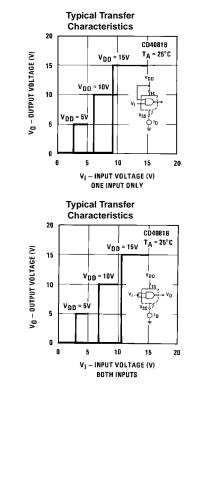
Operating Range (V_{DD}) 3 V_{DC} to 15 V_{DC} Operating Temperature Range (T_A) CD4071BC, CD4081BC

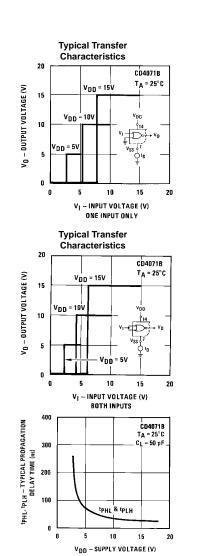
 $-40^\circ C$ to $+85^\circ C$

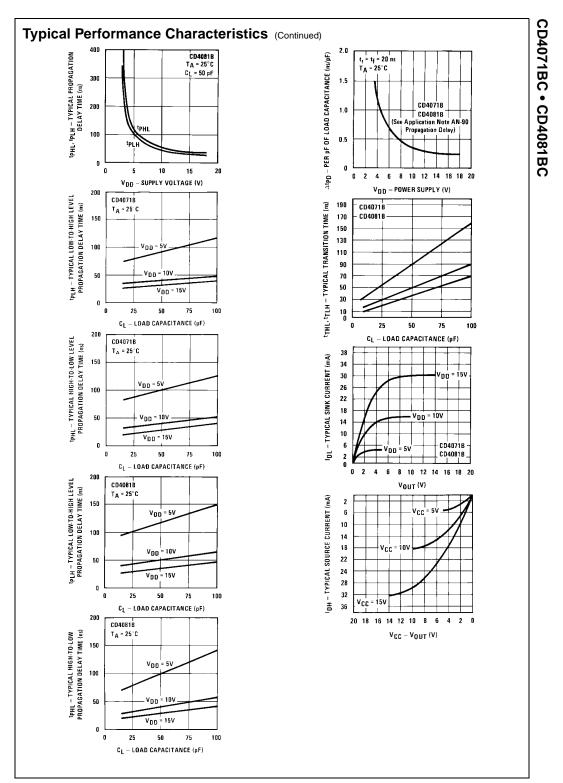
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera-ture Range" they are not meant to imply that the devices should be oper-ated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

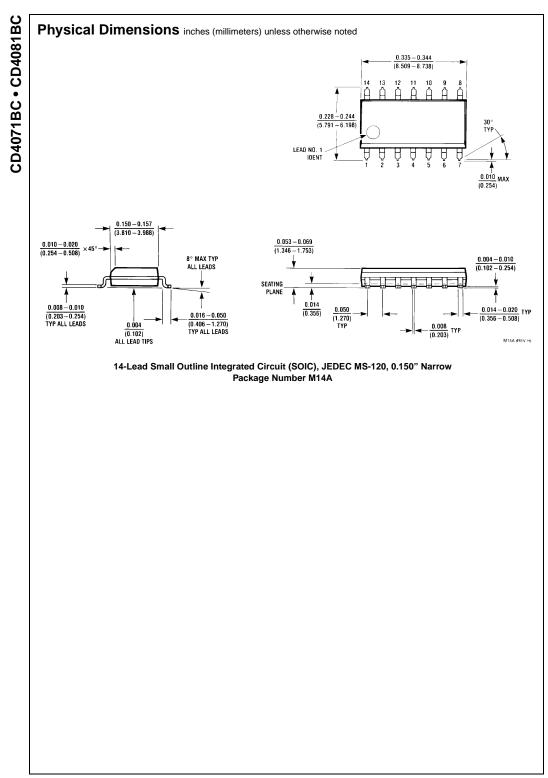
Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

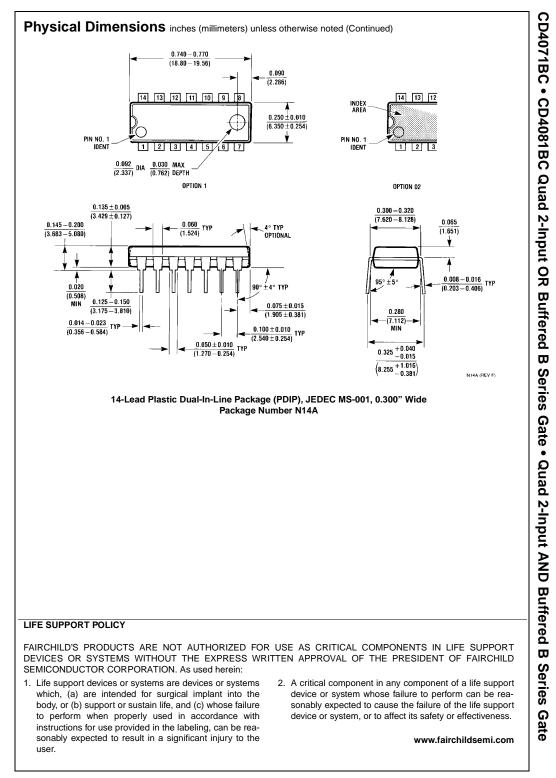
DC Electrical Characteristics (Note 2) CD4071BC/CD4081BC


Symbol	Parameter		Conditions	-40	D∘C	+25°C			+85°C		Units
Symbol	Farameter		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$			1		0.004	1		7.5	μA
	Current	$V_{DD} = 10V$,		2		0.005	2		15	μΑ
		$V_{DD} = 15V$,		4		0.006	4		30	μΑ
V _{OL}	LOW Level	$V_{DD} = 5V$			0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$	I _O < 1 μA		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$,		0.05		0	0.05		0.05	V
V _{ОН}	HIGH Level	$V_{DD} = 5V$		4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	I _O < 1 μA	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$,	14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V,$	V _O = 0.5V		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V$, V _O = 1.0V		3.0		4	3.0		3.0	V
		$V_{DD} = 15V$, V _O = 1.5V		4.0		6	4.0		4.0	V
V _{IH}	HIGH Level	$V_{DD} = 5V,$	V _O = 4.5V	3.5		3.5	3		3.5		V
	Input Voltage	$V_{DD} = 10V$, V _O = 9.0V	7.0		7.0	6		7.0		V
		$V_{DD} = 15V$, V _O = 13.5V	11.0		11.0	9		11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V,$	V _O = 0.4V	0.52		0.44	0.88		0.36		mA
	Current	$V_{DD} = 10V$, V _O = 0.5V	1.3		1.1	2.25		0.9		mA
	(Note 3)	$V_{DD} = 15V$, V _O = 1.5V	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V,$	V _O = 4.6V	-0.52		-0.44	-0.88		-0.36		mA
	Current	$V_{DD} = 10V$, V _O = 9.5V	-1.3		-1.1	-2.25		-0.9		mA
	(Note 3)	$V_{DD} = 15V$, V _O = 13.5V	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	V _{DD} = 15V	, V _{IN} = 0V		-0.30		-10 ⁻⁵	-0.30		-1.0	μA
		$V_{DD} = 15V$, V _{IN} = 15V		0.30		10 ⁻⁵	0.30		1.0	μA
Note 3: IC	OH and IOL are tested one output	t at a time.									
• • •			_								
AC E	ectrical Chara	acteristic	S (Note 4)								
			-	-	e coeffici		3%/°C				
Symb	ool Param	$\label{eq:constraint} \begin{array}{c c c c c c c c c c c c c c c c c c c $		nits							


Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	100	250	ns
	HIGH-to-LOW Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	90	250	ns
	LOW-to-HIGH Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
CIN	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	18		pF


CD4081BC TA	$= 25^{\circ}$ C. Input t _r : t _f = 20 ns. C ₁ = 50	pF, $R_1 = 200 \text{ k}\Omega$, Typical temperature	coefficient is 0.3%/°C		
Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	100	250	ns
	HIGH-to-LOW Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	ns
	LOW-to-HIGH Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	18		pF


are guaranteed by DC correlate ng.



Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.