FAIRCHILD

SEMICONDUCTOR

CD4093BC Quad 2-Input NAND Schmitt Trigger

General Description

The CD4093B consists of four Schmitt-trigger circuits. Each circuit functions as a 2-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive (V_T^+) and the negative voltage

 (V_T^{-}) is defined as hysteresis voltage (V_H) .

All outputs have equal source and sink currents and conform to standard B-series output drive (see Static Electrical Characteristics).

Features

- Wide supply voltage range: 3.0V to 15V
- Schmitt-trigger on each input
- with no external components
- Noise immunity greater than 50%

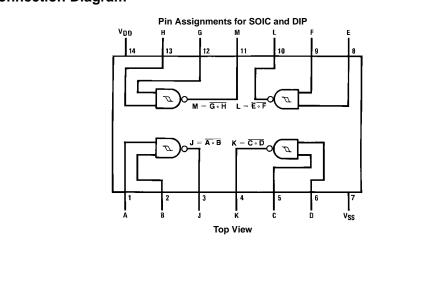
- Equal source and sink currents
- No limit on input rise and fall time
- Standard B-series output drive
- Hysteresis voltage (any input) T_A = 25°C

Typical	$V_{DD} = 5.0V$	V _H = 1.5V
	$V_{DD} = 10V$	$V_{H} = 2.2V$
	$V_{DD} = 15V$	V _H = 2.7V
Guaranteed		V _H = 0.1 V _{DD}

October 1987

Revised January 1999

Applications


- · Wave and pulse shapers
- High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators
- NAND logic

Ordering Code:

Order Number	Package Number	Package Description
CD4093BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
CD4093BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
	T IBIO K	

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

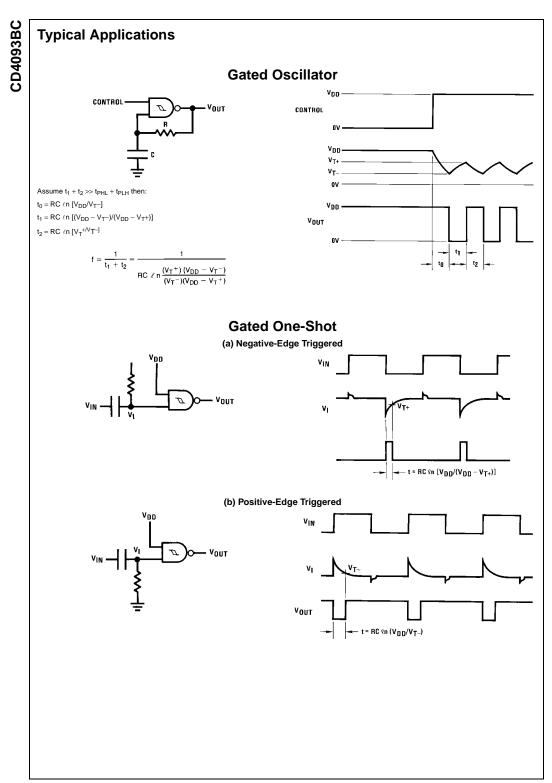
Connection Diagram

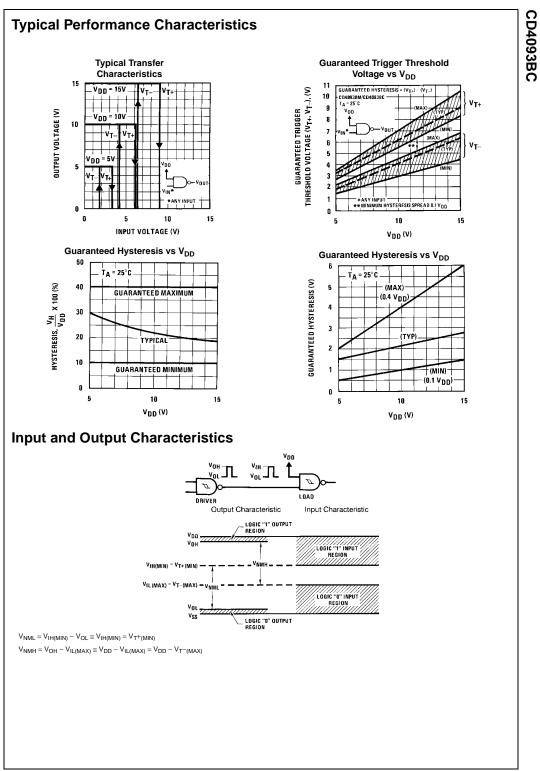
Absolute Maximum Ratings(Note 1) (Note 2)

DC Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

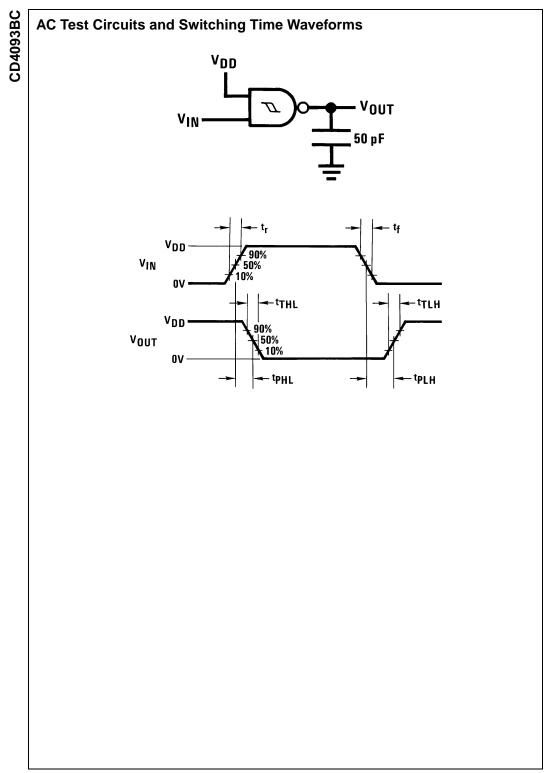
Recommended Operating Conditions (Note 2)

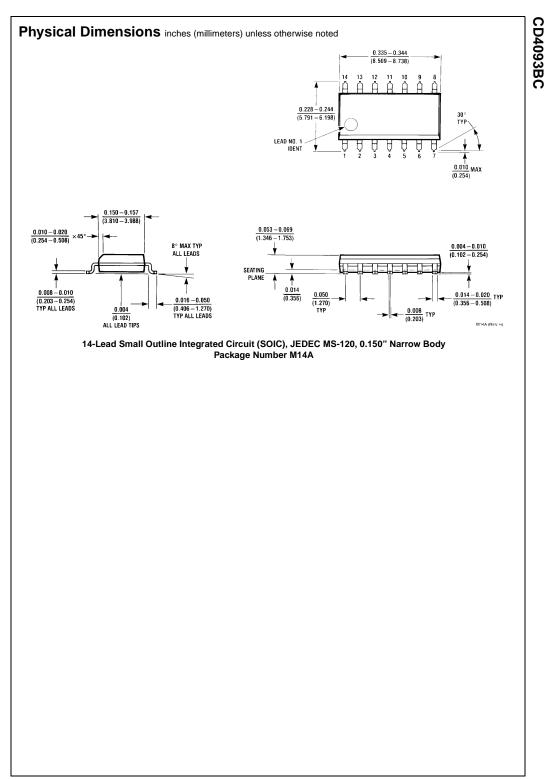
DC Supply Voltage (V_{DD}) Input Voltage (V_{IN}) 3 to 15 V_{DC} 0 to $V_{DD}\,V_{DC}$

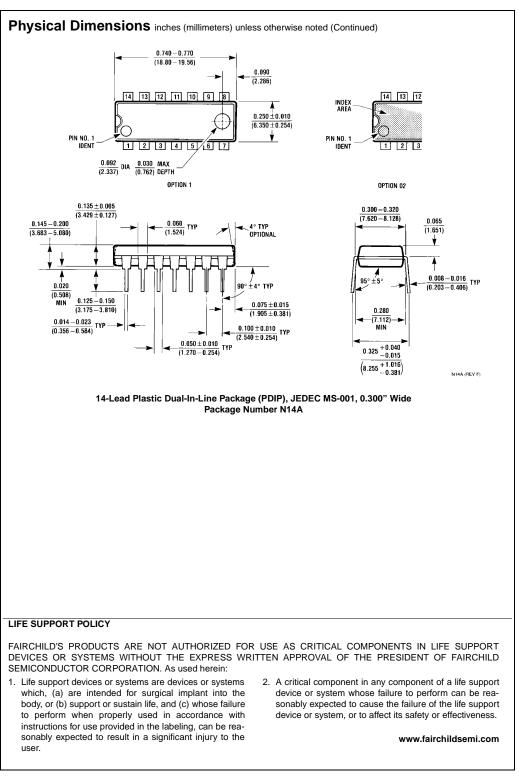

Operating Temperature Range (T_A) -40° C to $+85^{\circ}$ C Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.


Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)


-40°C +25°C +85°C Symbol Parameter Conditions Units Min Max Min Тур Max Min Max Quiescent Device V_{DD} = 5V 7.5 1.0 1.0 Inn μA Current $V_{DD} = 10V$ 2.0 2.0 15.0 μΑ V_{DD} = 15V 4.0 4.0 30.0 μΑ V_{OL} LOW Level $V_{IN}=V_{DD,}\;|I_{O}|<1\;\mu A$ Output Voltage 0.05 0.05 0.05 V $V_{DD} = 5V$ 0 $V_{DD} = 10V$ 0.05 0.05 0 0.05 V $V_{DD} = 15V$ 0.05 0 0.05 0.05 v HIGH Level $V_{IN}=V_{SS},\ |I_O|<1\ \mu A$ VOH Output Voltage $V_{DD} = 5V$ 4.95 4.95 5 4.95 V $V_{DD} = 10V$ 9.95 9.95 9.95 10 V $V_{DD} = 15V$ 14.95 14.95 15 14.95 v Negative-Going Threshold $|I_0| < 1 \,\mu A$ V_T-Voltage (Any Input) $V_{DD} = 5V, V_O = 4.5V$ 1.3 2.25 1.5 1.8 2.25 1.5 2.3 v $V_{DD} = 10V, V_O = 9V$ 2.85 4.5 3.0 4.1 4.5 3.0 4.65 ٧ $V_{DD} = 15V, V_O = 13.5V$ 4.35 6.75 4.5 6.3 6.75 4.5 6.9 V V_{T^+} Positive-Going Threshold $|I_0| < 1 \, \mu A$ v Voltage (Any Input) $V_{DD}=5V,\ V_O=0.5V$ 2.75 3.6 2.75 3.3 3.5 2.65 3.5 $V_{DD} = 10V, V_{O} = 1V$ 5.5 7.15 5.5 6.2 7.0 5.35 7.0 v 9.0 $V_{DD} = 15V, V_{O} = 1.5V$ 8.25 10.65 8.25 10.5 8.1 10.5 V $V_{DD} = 5V$ Hysteresis (V_T+ - V_T-) 0.5 2.35 0.5 1.5 0.35 2.0 V_H 2.0 V $V_{DD} = 10V$ 2.2 v (Any Input) 1.0 4.3 1.0 4.0 0.70 4.0 $V_{DD} = 15V$ 1.5 6.3 2.7 6.0 V 1.5 1.20 6.0 LOW Level Output I_{OL} $V_{IN} = V_{DD}$ 0.44 Current (Note 3) $V_{DD} = 5V, V_{O} = 0.4V$ 0.52 0.88 0.36 mΑ $V_{DD} = 10V, V_{O} = 0.5V$ 1.3 2.25 0.9 mΑ 1.1 V_{DD} = 15V, V_O = 1.5V 3.6 3.0 8.8 2.4 mA HIGH Level Output I_{OH} $V_{IN} = V_{SS}$ Current (Note 3) V_{DD} = 5V, V_O = 4.6V -0.52 0.44 -0.88 -0.36 mΑ $V_{DD} = 10V, V_{O} = 9.5V$ -1.3 -2.25 -0.9 -1.1 mΑ V_{DD} = 15V, V_O = 13.5V -3.6 -3.0 -8.8 -2.4 mΑ Input Current $V_{DD} = 15V, V_{IN} = 0V$ -10⁻⁵ -1.0 -0.3 μА I_{IN} -0.3 10⁻⁵ $V_{DD}=15V,\,V_{IN}=15V$ 0.3 0.3 1.0 μΑ Note 3: I_{OH} and I_{OL} are tested one output at a time


Ip+IL, Ip_LH Propagation Delay Time V_DD = 5V 300 450 ns V_DD = 15V 80 160 ns trid, tr_LH Transition Time V_DD = 15V 90 145 ns trid, tr_LH Transition Time V_DD = 15V 90 145 ns Ch Input Capacitance (Any Input) 5.0 7.5 ns Ch Input Capacitance (Per Gate) 2.4 PF Note 4: AC Parameters are guaranteed by DC correlated testing.	Symbol	= 50 pF, R_L = 200k, Input t_r , t_f = 20 Parameter	Conditions	Min	Тур	Max	Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HL, tPLH	Propagation Delay Time	$V_{DD} = 5V$		300	450	ns
$ \begin{array}{c c} T_{HL}, t_{TLH} \\ Transition Time \\ T_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 10V \\ V_{DD} = 15V \\ T_{DD} = 15V \\ T_{DD}$			$V_{DD} = 10V$		120	210	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					80	160	ns
V _{DD} = 15V 40 60 ns iN Input Capacitance (Any Input) 5.0 7.5 pF pD Power Dissipation Capacitance (Per Gate) 24 pF	HL, t _{TLH}	Transition Time			90	145	ns
Input Capacitance (Any Input) 5.0 7.5 pF PD Power Dissipation Capacitance (Per Gate) 24 pF							ns
PpD Power Dissipation Capacitance (Per Gate) 24 pF							
						7.5	-
Vete 4: AC Parameters are guaranteed by DC correlated testing.					24		pF



5

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.