FAIRCHILD

SEMICONDUCTOR

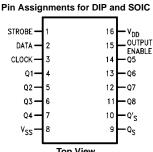
October 1987 Revised January 1999

CD4094BC 8-Bit Shift Register/Latch with 3-STATE Outputs

General Description

The CD4094BC consists of an 8-bit shift register and a 3-STATE 8-bit latch. Data is shifted serially through the shift register on the positive transition of the clock. The output of the last stage $(\mathsf{Q}_{\mathsf{S}})$ can be used to cascade several devices. Data on the Q_S output is transferred to a second output, Q'_{S} , on the following negative clock edge.

The output of each stage of the shift register feeds a latch, which latches data on the negative edge of the STROBE input. When STROBE is HIGH, data propagates through the latch to 3-STATE output gates. These gates are enabled when OUTPUT ENABLE is taken HIGH.


Features

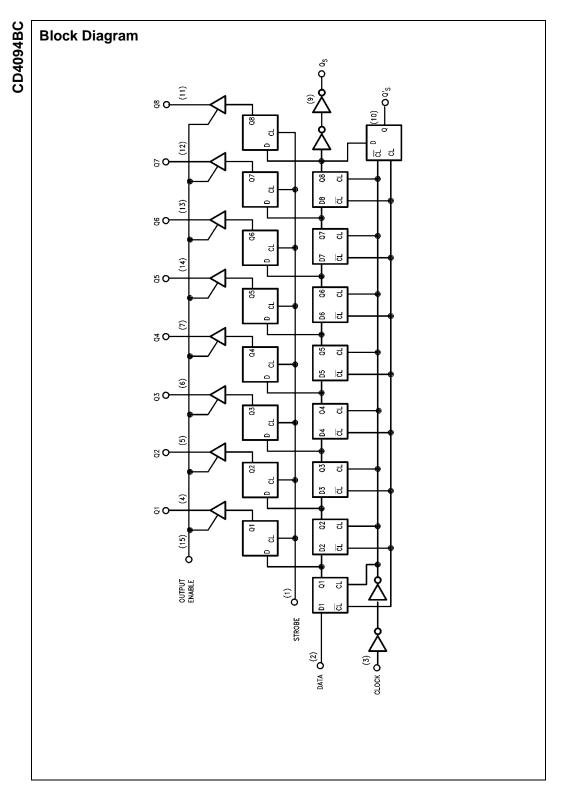
- Wide supply voltage range: 3.0V to 18V
- High noise immunity: 0.45 V_{DD} (typ.) ■ Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS ■ 3-STATE outputs

Ordering Code:

Order Number	Package Number	Package Description
CD4094BCWM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
CD4094BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

Top View


Truth Table

Clock	Output	Strobe	Data	Parallel	Outputs	Serial Outputs		
	Enable			Q1	Q _N	Q _S (Note 1)	$\mathbf{Q'}_{\Sigma}$	
~	0	Х	Х	Hi-Z	Hi-Z	Q7	No Change	
\sim	0	Х	Х	Hi-Z	Hi-Z	No Change	Q7	
~	1	0	Х	No Change	No Change	Q7	No Change	
~	1	1	0	0	Q _N -1	Q7	No Change	
~	1	1	1	1	Q _N -1	Q7	No Change	
\sim	1	1	1	No Change	No Change	No Change	Q7	

X = Don't Care

→ = HIGH-to-LOW → = LOW-to-HIGH

Note 1: At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and Qe,

Absolute Maximum Ratings(Note 2)

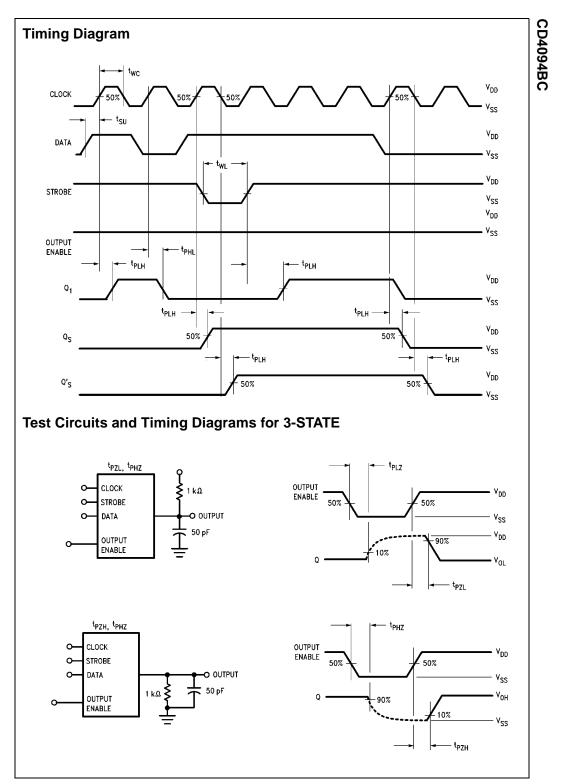
(Note 3)

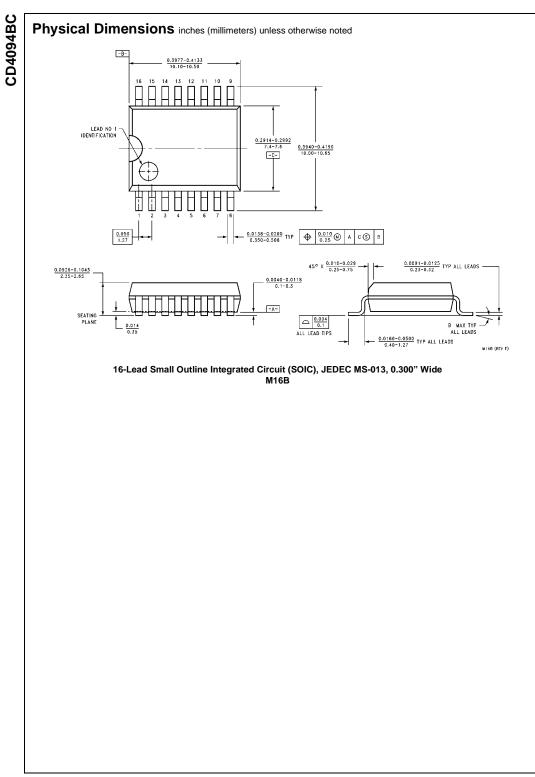
Supply Voltage (V _{DD})	-0.5 to $+18$ V _{DC}
Input Voltage (V _{IN})	–0.5 to V_{DD} +0.5 V_{DC}
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

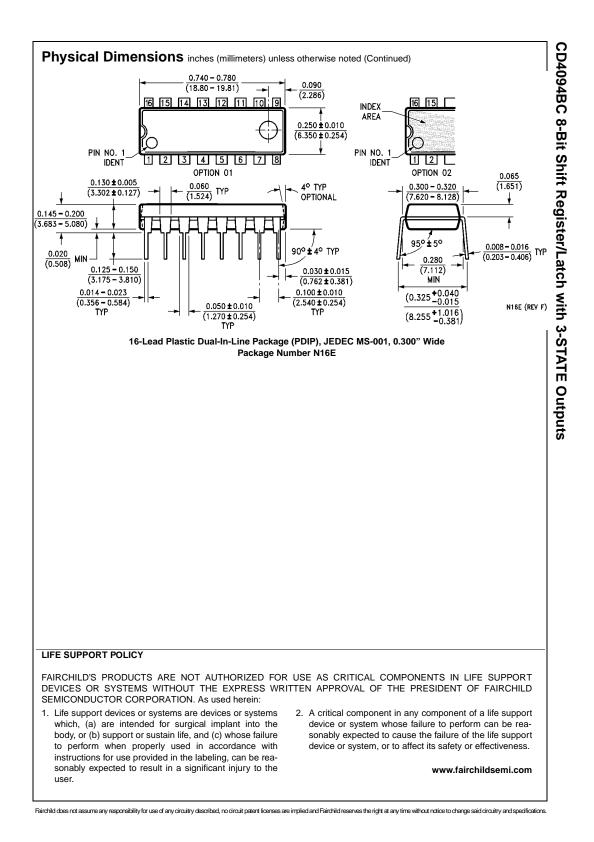
Recommended Operating Conditions (Note 3)

DC Supply Voltage (V_{DD}) Input Voltage (V_{IN}) +3.0 to +15 V_{DC} 0 to $V_{DD} V_{DC}$ -40°C to +85°C

Note 3: $V_{SS} = 0V$ unless otherwise specified.


DC Electrical Characteristics (Note 3)


Symbol	Parameter	Conditions	-40	-40°C		+25°C			+85°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent	$V_{DD} = 5.0V$		20			20		150	μΑ
	Device Current	$V_{DD} = 10V$		40			40		300	μΑ
		$V_{DD} = 15V$		80			80		600	μΑ
V _{OL}	LOW Level	V _{DD} = 5.0V		0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V \qquad I_O \le 1.0 \ \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	$V_{DD} = 5.0V$	4.95		4.95	5.0		4.95		V
	Output Voltage	$V_{DD} = 10V \qquad I_O \le 1 \ \mu A$	9.95		9.95	10.0		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15.0		14.95		V
VIL	LOW Level	V_{DD} = 5.0V, V_{O} = 0.5V or 4.5V		1.5			1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	V
VIH	HIGH Level	$V_{DD} = 5.0V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		V
I _{OL}	LOW Level	$V_{DD} = 5.0V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Output Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
	(Note 4)	$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level	$V_{DD} = 5.0V, V_{O} = 4.6V$	-0.52		-0.44	0.88		-0.36		mA
	Output Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	2.25		-0.9		mA
	(Note 4)	$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3			-0.3		-1.0	μΑ
		$V_{DD} = 15V, V_{IN} = 15V$		0.3			0.3		1.0	
I _{OZ}	3-STATE Output	$V_{DD} = 15V, V_{IN} = 0V \text{ or } 15V$		1			1		10	μA
	Leakage Current									


3

Note 4: I_{OH} and I_{OL} are tested one output at a time.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay	$V_{DD} = 5.0V$		300	600	ns
	Clock to Q _S	$V_{DD} = 10V$		125	250	ns
		$V_{DD} = 15V$		95	190	ns
t _{PHL} , t _{PLH}	Propagation Delay	$V_{DD} = 5.0V$		230	460	ns
	Clock to Q'_{Σ}	$V_{DD} = 10V$		110	220	ns
		$V_{DD} = 15V$		75	150	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock	$V_{DD} = 5.0V$		420	840	ns
	to Parallel Out	$V_{DD} = 10V$		195	390	ns
		V _{DD} = 15V		135	270	ns
t _{PHL} , t _{PLH}	Propagation Delay Strobe	$V_{DD} = 5.0V$		290	580	ns
	to Parallel Out	$V_{DD} = 10V$		145	290	ns
		V _{DD} = 15V		100	200	ns
t _{PHZ}	Propagation Delay HIGH	$V_{DD} = 5.0V$		140	280	ns
	Level to HIGH Impedance	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PLZ}	Propagation Delay LOW	$V_{DD} = 5.0V$		140	280	ns
	Level to HIGH Impedance	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PZH}	Propagation Delay HIGH	$V_{DD} = 5.0V$		140	280	ns
	Impedance to HIGH Level	$V_{DD} = 10V$		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PZL}	Propagation Delay HIGH	$V_{DD} = 5.0V$		140	280	ns
	Impedance to LOW Level	V _{DD} = 10V		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5.0V$		100	200	ns
		$V_{DD} = 10V$		50	100	ns
		V _{DD} = 15V		40	80	ns
t _{SU}	Set-Up Time	$V_{DD} = 5.0V$	80	40		ns
	Data to Clock	$V_{DD} = 10V$	40	20		ns
		V _{DD} = 15V	20	10		ns
t _r , t _f	Maximum Clock Rise	$V_{DD} = 5.0V$	1			ms
	and Fall Time	$V_{DD} = 10V$	1			ms
	Minimum Olard	$V_{DD} = 15V$	1	400		ms
t _{PC}	Minimum Clock Pulse Width	$V_{DD} = 5.0V$	200	100 50		ns
	Pulse Width	$V_{DD} = 10V$	100			ns
	Minimum Chroke	$V_{DD} = 15V$	83	40		ns
t _{PS}	Minimum Strobe Pulse Width	$V_{DD} = 5.0V$	200 80	100 40		ns ns
	Pulse Width	$V_{DD} = 10V$	80 70	40 35		
£	Maximum Clock Fraguenay	$V_{DD} = 15V$				ns Mu-
f _{max}	Maximum Clock Frequency	$V_{DD} = 5.0V$	1.5	3.0		MHz
		$V_{DD} = 10V$	3.0 4.0	6.0 8.0		MHz MHz
C	Input Consoitonee	V _{DD} = 15V	4.0	5.0	7.5	
C _{IN}	Input Capacitance ameters are guaranteed by DC correlat	Any Input		5.0	1.0	pF

