FAIRCHILD

SEMICONDUCTOR

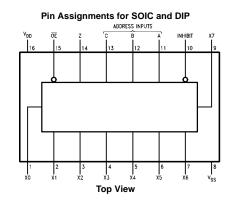
CD4512BC 8-Channel Buffered Data Selector

General Description

The CD4512BC buffered 8-channel data selector is a complementary MOS (CMOS) circuit constructed with N- and P-channel enhancement mode transistors. This data selector is primarily used as a digital signal multiplexer selecting 1 of 8 inputs and routing the signal to a 3-STATE output. A high level at the Inhibit input forces a low level at the output. A high level at the Output Enable (OE) input forces the output into the 3-STATE condition. Low levels at both the Inhibit and (OE) inputs allow normal operation.

October 1987 Revised January 1999

Features

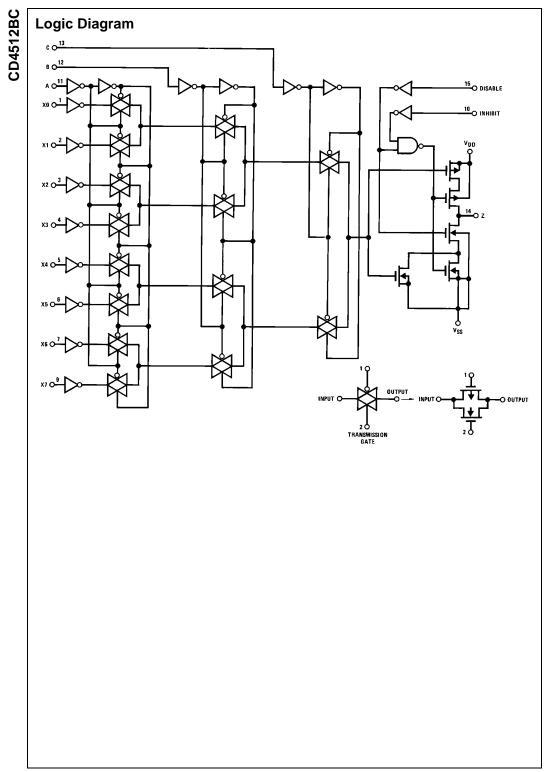

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- 3-STATE output
- Low quiescent power dissipation:
 0.25 μW/package (typ.) @ V_{CC} = 5.0V
- Plug-in replacement for Motorola MC14512

Ordering Code:

Order Number Package Number		Package Description			
CD4512BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body			
CD4512BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Devices also available in Tape and Reel. Specify by appending suffix "X" to the ordering code.

Connection Diagram



Truth Table

Address Inputs			Control	Output		
С	В	Α	Inhibit	OE	Z	
0	0	0	0	0	X0	
0	0	1	0	0	X1	
0	1	0	0	0	X2	
0	1	1	0	0	X3	
1	0	0	0	0	X4	
1	0	1	0	0	X5	
1	1	0	0	0	X6	
1	1	1	0	0	X7	
2	1	1	1	0	0	
2	2	2	2	1	Hi-Z	

2 = Don't careHi-Z = 3-STATE condition Xn = Data at input n

© 1999 Fairchild Semiconductor Corporation DS005993.prf

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V_{DD})

Power Dissipation (P D)

Lead Temperature, (T_L)

(Soldering, 10 seconds)

Storage Temperature Range (T_S)

Input Voltage (VIN)

Dual-In-Line

Small Outline

Recommen	ded Operating
Conditions	(Note 2)

DC Supply Voltage (V _{DD}) Input Voltage (V_{IN}) 3.0 to 15 V_{DC} 0 to $V_{DD} V_{DC}$

 -65°C to +150°C
 Operating Temperature Range (T_A)
 -40°C to +85°C

 Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The Recommended 500 mW
 Operating Conditions and Electrical Characteristics table provide conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified. $260^{\circ}C$

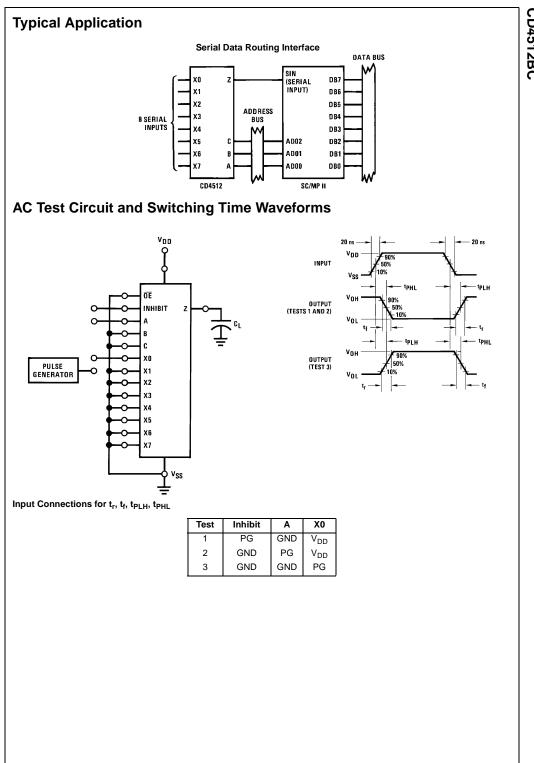
DC Electrical Characteristics (Note 2)

-40°C +25°C +85°C Parameter Conditions Units Symbol Min Max Min Тур Max Min Max Quiescent Device $V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$ 20 0.005 20 150 Inn uΑ Current $V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$ 40 0.010 40 300 μΑ $V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$ 80 0.015 80 600 μA V_{OL} LOW Level $V_{DD} = 5V$ 0.05 0 0.05 0.05 V $|I_{OL}| < 1 \ \mu A$ 0 v Output Voltage $V_{DD} = 10V$ 0.05 0.05 0.05 $V_{DD} = 15V$ 0.05 0 0.05 0.05 V HIGH Level $V_{DD} = 5V$ 4.95 V VOH 4.95 4.95 5.0 $V_{DD} = 10V$ v 9 95 Output Voltage $|I_{OH}| < 1 \ \mu A$ 9 95 10.0 9 95 $V_{DD} = 15V$ 14.95 14.95 15.0 14.95 V LOW Level $V_{DD} = 5V, V_{O} = 0.5V$ V_{IL} V 1.5 2.25 1.5 1.5 Input Voltage V_{DD} = 10V, V_O = 1.0V 3.0 4.50 3.0 3.0 V V_{DD} = 15V, V_O = 1.5V 6.75 V 4.0 4.0 4.0 V_{IH} HIGH Level $V_{DD} = 5V, V_{O} = 4.5V$ 3.5 3.5 2.75 3.5 V V_{DD} = 10V, V_O = 9.0V Input Voltage 7.0 7.0 5.50 7.0 V $V_{DD} = 15V, V_O = 13.5V$ 11.0 11.0 8.25 11.0 v LOW Level Output $V_{DD} = 5V, V_{O} = 0.4V$ 0.52 0.44 0.78 0.36 mΑ IOL Current $V_{DD} = 10V, V_O = 0.5V$ 1.3 1.1 2.0 0.9 mΑ V_{DD} = 15V, V_O = 1.5V (Note 3) 3.6 3.4 7.8 2.4 mA HIGH Level Output $V_{DD} = 5V, V_{O} = 4.6V$ -0.2 -0.16 -0.12mΑ I_{OH} $V_{DD} = 10V, V_{O} = 9.5$ -0.3 Current -0.5 -0.4 mA (Note 3) V_{DD} = 15V, V_O = 13.5V -1.4 -1.2 -1.0 mΑ Input Current V_{DD} = 15V, V_{IN} = 0V -0.3 -10-5 -0.3 μΑ -1.0 I_{IN} 10⁻⁵ $V_{DD} = 15V, V_{IN} = 15V$ 0.3 0.3 1.0 μА 3-STATE V_{DD} = 15V, V_O = 0V ±1.0 ±10 ⁻ ±1.0 ±7.5 μΑ loz V_{DD} = 15V, V_O = 15V Output Current

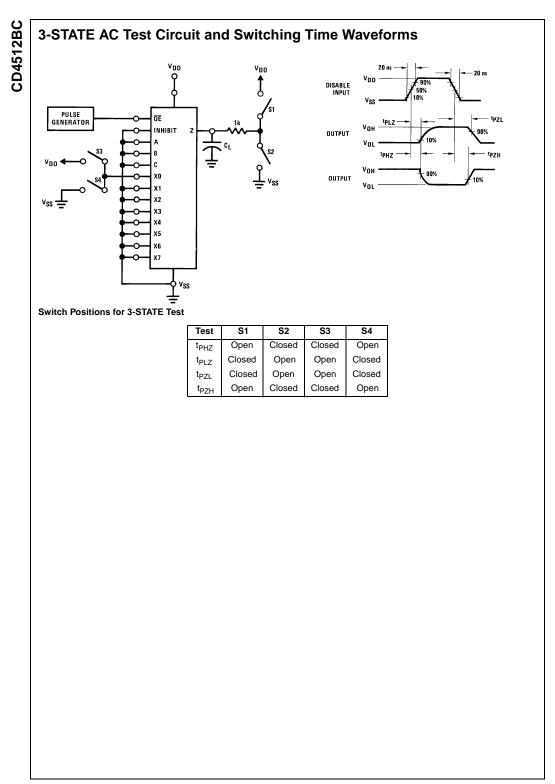
–0.5 to +18 $V_{\mbox{\scriptsize DC}}$

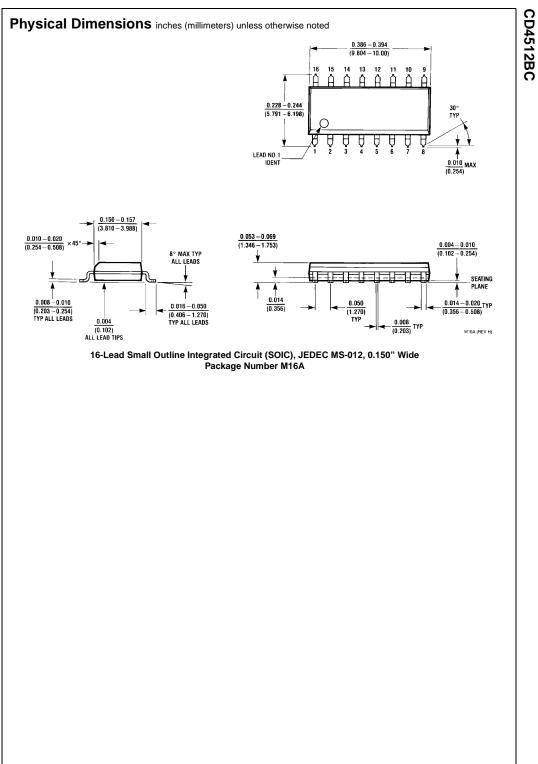
–0.5 to V_{DD} + 0.5 V_{DC}

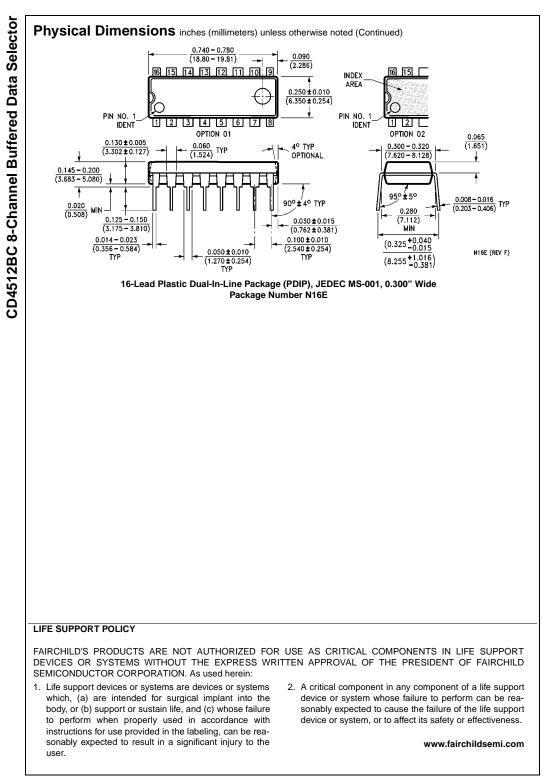
Note 3: I_{OH} and I_{OL} are tested one output at a time.


CD4512BC

Symbol	Parameter	Conditions	CD4512BM			CD4512BC			Units
			Min	Тур	Max	Min	Тур	Max	Units
	Propagation Delay	$V_{DD} = 5V$		225	500		225	750	ns
	HIGH-to-LOW Level	$V_{DD} = 10V$		75	175		75	200	ns
		$V_{DD} = 15V$		57	130		57	150	ns
t _{PLH}	Propagation Delay	$V_{DD} = 5V$		225	500		225	750	ns
	LOW-to-HIGH Level	$V_{DD} = 10V$		75	175		75	200	ns
		$V_{DD} = 15V$		57	130		57	150	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		70	200		70	200	ns
		$V_{DD} = 10V$		35	100		35	100	ns
		$V_{DD} = 15V$		25	80		25	80	ns
t _{PHZ} , t _{PLZ}	Propagation Delay into	$V_{DD} = 5V$		50	125		50	125	ns
	3-STATE from Logic Level	$V_{DD} = 10V$		25	75		25	75	ns
		$V_{DD} = 15V$		19	60		19	60	ns
t _{PZH} , t _{PZL}	Propagation Delay to Logic	$V_{DD} = 5V$		50	125		50	125	ns
	Level from 3-STATE	$V_{DD} = 10V$		25	75		25	75	ns
		$V_{DD} = 15V$		19	60		19	60	ns
C _{IN}	Input Capacitance	(Note 5)		7.5	15		7.5	15	pF
COUT	3-STATE Output	(Note 5)		7.5	15		7.5	15	pF
	Capacitance								
C _{PD}	Power Dissipation Capacity	(Note 6)		150			150		pF


Note 4: AC Parameters are guaranteed by DC correlated testing.


CD4512BC


Note 5: Capacitance guaranteed by periodic testing. Note 6: C_{PD} determines the no load AC power of any CMOS device. For complete explanation, see Family Characteristics Application Note, AN-90.

CD4512BC

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.