September 1986 Revised February 2000 DM74ALS574A Octal D-Type Edge-Triggered Flip-Flop with 3-STATE Outputs

FAIRCHILD

BEMICONDUCTOR IM

DM74ALS574A **Octal D-Type Edge-Triggered Flip-Flop** with 3-STATE Outputs

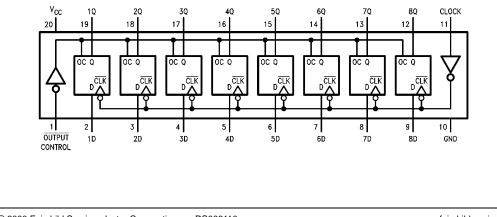
General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the DM74ALS574A are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

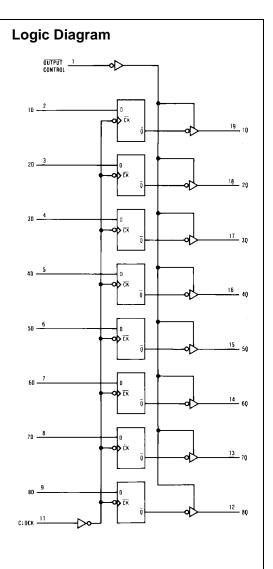

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally equivalent with DM74LS374
- Improved AC performance over DM74LS374 at approximately half the power
- 3-STATE buffer-type outputs drive bus lines directly

Ordering Code:

Order Number	Order Number Package Number Package Description			
DM74ALS574AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74ALS574ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
DM74ALS574AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		

Connection Diagram


© 2000 Fairchild Semiconductor Corporation DS006110

DM74ALS574A

Function Table Г

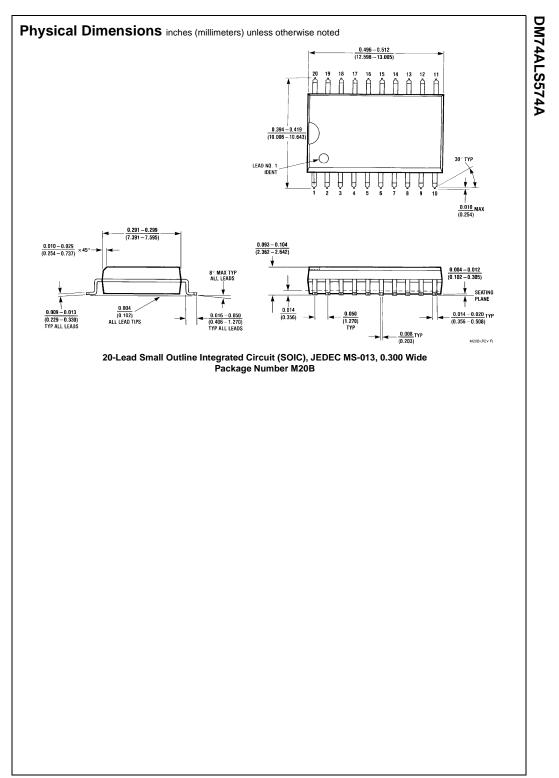
Output	Clock	D	Output
Control	CIUCK	U	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	L	х	Q ₀
н	х	х	z

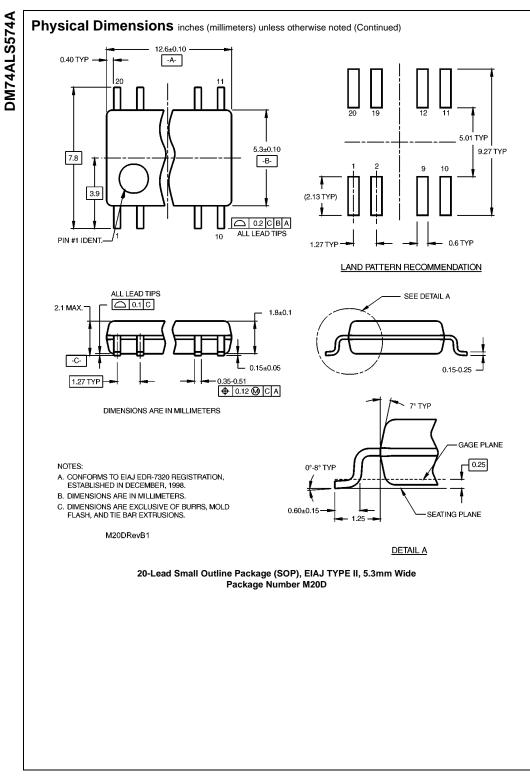
Absolute Maximum Ratings(Note 1)

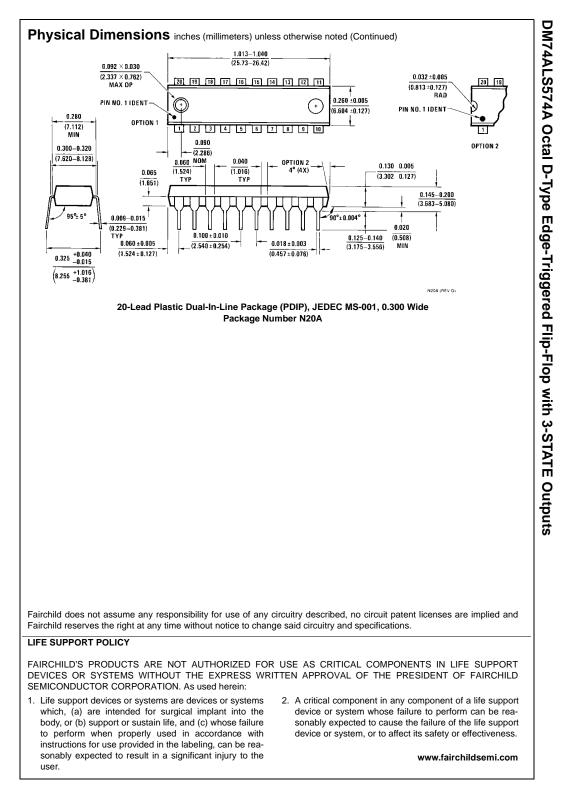
Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	–65°C to +150°C
Typical θ _{JA}	
N Package	56.0°C/W
M Package	75.0°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions


Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{ОН}	HIGH Level Output Current				-2.6	mA
I _{OL}	LOW Level Output Current				24	mA
f _{CLOCK}	Clock Frequency		0		35	MHz
	Width of Clock Pulse	HIGH	14			ns
t _W	WIGHT OF CIOCK FUISE	LOW	14			ns
t _{SU}	Data Setup Time	(Note 2)	15 ↑			ns
t _H	Data Hold Time	(Note 2)	0↑			ns
T _A	Free Air Operating Temperature		0		70	°C


Electrical Characteristics


Symbol	Parameter	Conditions		Min	Тур	Max -1.2	Units V
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_1 = -18 \text{ mA}$					
011	HIGH Level Output Voltage	$V_{CC} = 4.5V$ $V_{IL} = V_{IL}$ Max	I _{OH} = Max	2.4	3.2		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = 4.5V \text{ to } 5.5V$ $V_{CC} = 4.5V$ $V_{IH} = 2V$	$I_{OH} = -400 \ \mu A$ $I_{OL} = 12 \ mA$	V _{CC} – 2	0.25	0.4	v v
			I _{OL} = 24 mA		0.35	0.5	V
I	Input Current at Max Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$	I			0.1	mA
IH	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μA
IL	LOW Level Input Current	$V_{CC} = 5.5 V, V_{IL} = 0.4 V$				-0.2	mA
0	Output Drive Current	$V_{CC} = 5.5 V$, $V_{O} = 2.25 V$		-30		-112	mA
OZH	OFF-State Output Current HIGH Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_O = 2.7V$				20	μΑ
OZL	OFF-State Output Current d LOW Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_O = 0.4V$				-20	μA
I _{CC} Supply Current	Supply Current	V _{CC} = 5.5V	Outputs HIGH		11	18	mA
		Outputs Open	Outputs LOW		17	27	mA
			Outputs Disabled		17	28	mA

DM74ALS574A

over recommended operating free air temperature range									
Symbol	Parameter	Conditions	From	То	Min	Max	Units		
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 4.5V \text{ to } 5.5V$			35		MHz		
1 611	Propagation Delay Time	$R_L = 500\Omega$	Clock	Any Q	4	14	ns		
	LOW-to-HIGH Level Output	C _L = 50 pF	CIOCIC	/ lily Q	-	.4	110		
110 5	Propagation Delay Time		Clock	Any Q	4	14	ns		
	HIGH-to-LOW Level Output		CIOCIC	, uny Q	-	14	113		
t _{PZH}	Output Enable Time		Output Control	Any Q	4	18	ns		
	to HIGH Level Output	Level Output Contro	Output Control	, uny Q	-	10	115		
t _{PZL}	Output Enable Time		Output Control	Any Q	4	18	ns		
	to LOW Level Output		Output Control	Ally Q	-	10	113		
t _{PHZ}	Output Disable Time		Output Control	Any Q	2	10	ns		
	from HIGH Level Output		Output Control	Ally Q	2	10	115		
t _{PLZ}	Output Disable Time	1	Output Control	Any Q	2	12	ns		
	from LOW Level Output		Output Control	Any Q	2	12	ns		

