

April 1984 Revised February 2000

DM74ALS874B Dual 4-Bit D-Type Edge-Triggered Flip-Flop with 3-STATE Outputs

General Description

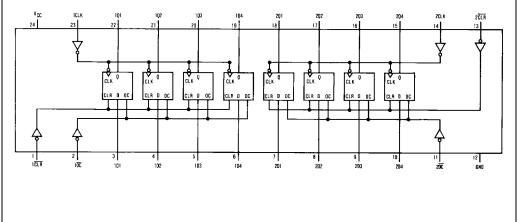
This dual 4-bit register features totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide this register with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. It is particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the DM74ALS874B are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features

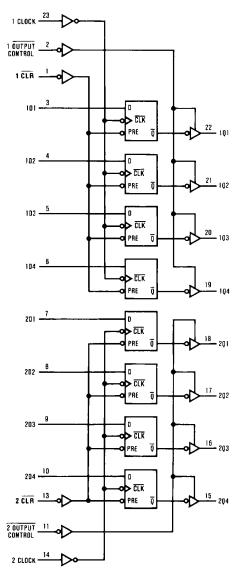

- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly
- Space saving 300 mil wide package
- Asynchronous clear

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS874BWM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74ALS874BNT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram



Function Table

	Inputs				
CLR	D	CLK	ОС	Q	
Х	Х	Х	Н	Z	
L	Х	Х	L	L	
Н	Н	1	L	Н	
Н	L	1	L	L	
Н	Х	L	L	Q_0	

- L = LOW State
 H = HIGH State
 X = Don't Care
 ↑ = Positive Edge Transition
 Z = High Impedance State
 Q₀ = Previous Condition of Q

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V
Input Voltage 7V
Voltage Applied to Disabled Output 5.5V
Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

 N Package
 51.0°C/W

 M Package
 86.5°C/W

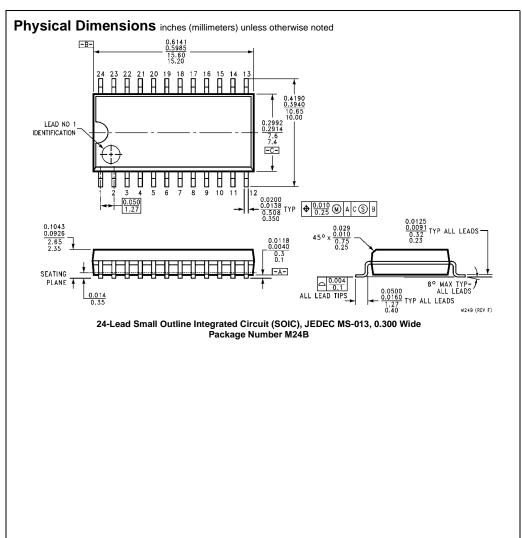
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

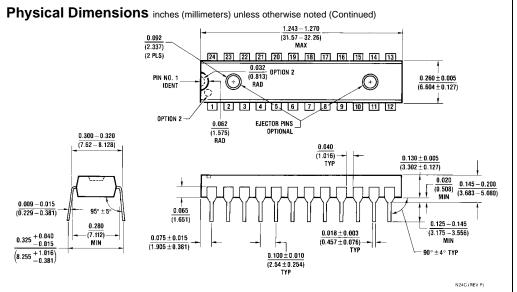
Symbol	Paramete	er	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Currer	nt			-2.6	mA
I _{OL}	LOW Level Output Current				24	mA
f _{CLK}	Clock Frequency		0		30	MHz
t _{WCLK}	Width of Clock Pulse	HIGH	16.5			ns
		LOW	16.5			ns
t _{WCLR}	Width of Clear Pulse	LOW	10			ns
t _{SU}	Data Setup Time (Note 2)		15↑			ns
t _H	Data Hold Time (Note 2)		0↑			ns
t _{SU}	Clear Inactive		12			ns
T _A	Free Air Operating Tempe	rature	0		70	°C

Note 2: The (↑) arrow indicates the positive edge of the Clock is used for reference.

Electrical Characteristics


over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$	_I = -18 mA			-1.2	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = 4.5V$ $V_{II} = V_{II} \text{ Max}$	I _{OH} = Max	2.4	3.2		V
	Output voltage	$V_{CC} = 4.5V \text{ to } 5.5V$	I _{OH} = -400 μA	V _{CC} – 2			V
V _{OL}	LOW Level Output Voltage	V _{CC} = 4.5V V _{IH} = 2V	I _{OL} = 12 mA		0.25	0.4	V
			$I_{OL} = 24 \text{ mA}$		0.35	0.5	V
l _l	Input Current @Maximum Input Voltage	V _{CC} = 5.5V, V _{IH} = 7V				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.2	mA
Io	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{OZH}	OFF-State Output Current HIGH Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_{O} = 2.7V$				20	μА
I _{OZL}	OFF-State Output Current LOW Level Voltage Applied	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_{O} = 0.4V$				-20	μА
I _{CC}	Supply Current	V _{CC} = 5.5V	Outputs HIGH		14	21	mA
		Outputs OPEN	Outputs LOW		19	30	mA
			Outputs Disabled		20	32	mA


Switching Characteristics

over recommended operating free air temperature range.

Symbol	Parameter	Conditions	From	То	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	V _{CC} = 4.5V to 5.5V			30	MHz	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$R_{L} = 500, \Omega,$ $C_{L} = 50 \text{ pF}$	Clock	Any Q	4	14	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clock	Any Q	4	14	ns
t _{PZH}	Output Enable Time to HIGH Level Output		Output Control	Any Q	4	18	ns
t _{PZL}	Output Enable Time to LOW Level Output]	Output Control	Any Q	4	18	ns
t _{PHZ}	Output Disable Time from HIGH Level Output		Output Control	Any Q	2	10	ns
t _{PLZ}	Output Disable Time from LOW Level Output]	Output Control	Any Q	3	12	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clear	Any Q	5	17	ns

5

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com