

Absolute Maximum Ratings(Note 4)

Supply Voltage
Input Voltage (Reset)
Input Voltage (A or B)
Operating Free Air Temperature Range
Storage Temperature Range The safety of the device cannot be guaranteed. The device should not be 5.5 V operated at these limits. The parametric values defined in the "Electrical $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad \begin{aligned} & \text { The "Recommended Operating Conditions" table will define the conditions }\end{aligned}$ for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
$\overline{\mathrm{V}_{\text {CC }}}$	Supply Voltage		4.75	5	5.25	V
V_{IH}	HIGH Level Input Voltage		2			V
$\overline{\mathrm{V}} \mathrm{IL}$	LOW Level Input Voltage				0.8	V
I_{OH}	HIGH Level Output Current				-0.4	mA
${ }_{\text {IOL }}$	LOW Level Output Current				8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 5)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
${ }^{\text {f CLK }}$	Clock Frequency (Note 6)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 5)	A	15			ns
		B	30			
		Reset	15			
t_{W}	Pulse Width (Note 6)	A	25			ns
		B	50			
		Reset	25			
$\overline{t_{\text {REL }}}$	Reset Release Time (Note 5)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 6)		35			ns
T_{A}	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$

Note 5: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 6: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{aligned}$		2.7	3.4		V
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	(Note 8)		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
\square	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	Reset			0.1	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V} \end{aligned}$	A			0.2	
			B			0.4	
$\overline{I_{\mathrm{IH}}}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			80	
$\overline{I_{\text {IL }}}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
Ios	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \text { (Note 9) }$		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 7)			9	15	mA

Electrical Characteristics (Continued)
Note 8: Q_{A} outputs are tested at $I_{L L}=$ Max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note $\mathbf{1 0}$: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Switching Characteristics at $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$		A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$t_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	A to Q_{A}		16		20	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	A to Q_{A}		18		24	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	A to Q_{D}		48		52	ns
${ }_{\text {tPHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	A to Q_{D}		50		60	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	B to Q_{B}		16		23	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	B to Q_{B}		21		30	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	B to Q_{C}		32		37	ns
${ }_{\text {t }{ }_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	B to Q_{C}		35		44	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	B to Q_{D}		32		36	ns
${ }_{\text {t }}$	Propagation Delay Time HIGH-to-LOW Level Output	B to Q_{D}		35		44	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	SET-9 to Q_{A}, Q_{D}		30		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	SET-9 to $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$		40		48	ns
${ }_{\text {tPHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	SET-0 to Any Q		40		52	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
