FAIRCHILD

BEMICONDUCTOR IM

June 1999 Revised March 2000

FSTU32160A 16-Bit to 32-Bit Multiplexer/Demultiplexer Bus Switch with -2V Undershoot Protection

Features

■ Low I_{CC}.

■ Undershoot hardened to -2V (A and B Ports).

Minimal propagation delay through the switch.

4Ω switch connection between two ports.

Control inputs compatible with TTL level.

See Applications Note AN-5008 for details

Zero bounce in flow-through mode.

General Description

The Fairchild Switch FSTU32160A is a 16-bit to 32-bit high-speed CMOS TTL-compatible multiplexer/demultiplexer bus switch. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device can be used in applications where two buses need to be addressed simultaneously. The FSTU32160A is designed so that the A Port demultiplexes into B_1 or B_2 or both. The A and B Ports are "undershoot hardened" with UHC[™] protection to support an extended range to 2.0V below ground. Fairchild's integrated Undershoot Hardened Circuit, UHC senses undershoot at the I/O's, and responds by preventing voltage differentials from developing and turning on the switch.

Two select (SEL1, SEL2) inputs provide switch enable control. When SEL1, SEL2 are HIGH, the device precharges the B Port to a selectable bias voltage (Bias V) to minimize live insertion noise.

Ordering Code:

Order Number Package Number Package Description 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide FSTU32160AMTD MTD56

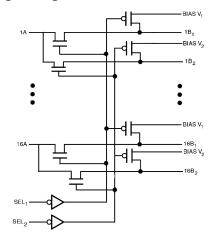
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

UHC™ is a trademark of Fairchild Semiconductor Corporation

www.fairchildsemi.com

FSTU32160A 16-Bit to 32-Bit Multiplexer/Demultiplexer Bus Switch with –2V Undershoot Protection

Connection I	Diagram	
	•	
10		1.
1B ₁ —	1 56	— 1A
2B ₁ —	2 55	- 1B ₂
2A —	3 54	- 2B ₂
3B ₁ —	4 53	<u> </u>
4 B ₁ —	5 52	- 3B ₂
4A —	6 51	— 4B ₂
5B ₁ —	7 50	— 5A
6В ₁ —	8 49	— 5В ₂
6A —	9 48	— 6 B ₂
7B ₁ —	10 47	— 7A
8B ₁ —	11 46	— 7В ₂
8A —	12 45	— 88 ₂
gnd —	13 44	— GND
v _{cc} —	14 43	— v _{cc}
9B ₁ —	15 42	— 9A
10B ₁ —	16 41	— 9B ₂
10A —	17 40	— 10B ₂
11B ₁ —	18 39	— 11A
12B ₁ —	19 38	— 1 1 B ₂
12A —	20 37	— 12B ₂
13B ₁ —	21 36	— 13A
14B ₁ —	22 35	— 1 3 B ₂
14A —	23 34	— 14B ₂
15B ₁ —	24 33	— 15A
16B ₁ —	25 32	— 15B ₂
16A —	26 31	— 16B ₂
BIAS V ₁ —	27 30	—BIAS V ₂
SEL1 -	28 29	- SEL ₂


Pin Descriptions

Pin Name	Description
SEL ₁ , SEL ₂	Select Inputs
Α	Bus A
B ₁ , B ₂	Bus B

Truth Table

Inp	uts	
SEL ₁	SEL ₂	Function
L	Н	x A = x B ₁
н	L	$x A = x B_2$
L	L	$x A = x B_1 and x B_2$
н	Н	$x B_1, x B_2 = BiasV$

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 2)	-2.0V to +7.0V
BiasV Voltage Range	-0.5V to +7.0V
DC Input Control Pin Voltage	
(V _{IN}) (Note 3)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) V_{IN} < 0V	–50 mA
DC Output Current (I _{OUT})	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating Conditions (Note 4)

Power Supply Operating (V _{CC})	4.0V to 5.5V
Precharge Supply (BiasV)	1.5 to V _{CC}
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0nS/V to 5nS/V
Switch I/O	0nS/V to DC
Free Air Operating Temperature (T _A)	-40 °C to +85 °C
Note 1: The "Absolute Maximum Ratings" are those the safety of the device cannot be guaranteed. The	

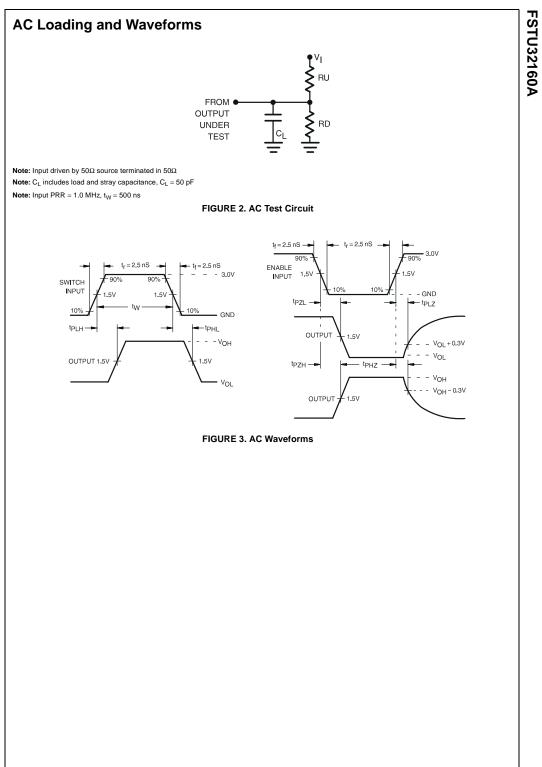
FSTU32160A

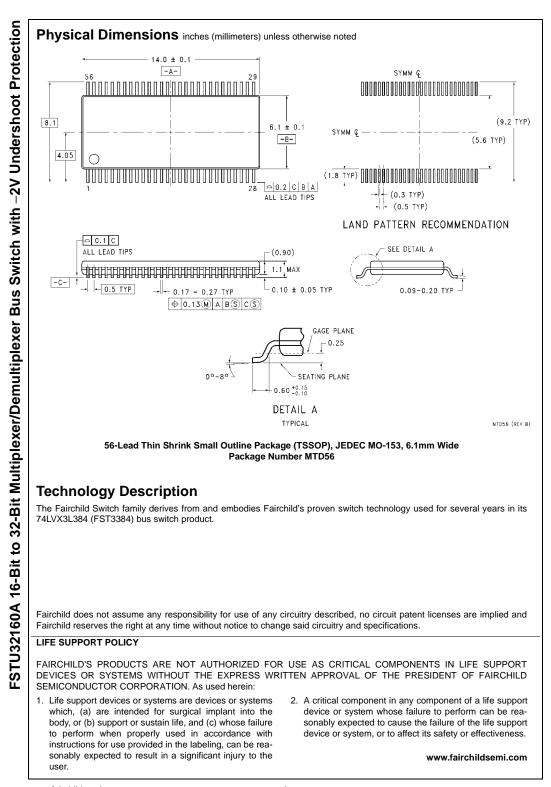
the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: $V_{\rm S}$ is the voltage observed/applied at either the A or B Ports across the switch.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.


			T _A =	-40 °C to +	85 °C		
Symbol	Parameter	V _{CC} (V)	Min	Typ (Note 5)	Max	Units	Conditions
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 \text{mA}$
VIH	HIGH Level Input Voltage	4.0-5.5	2.0			V	
VIL	LOW Level Input Voltage	4.0-5.5			0.8	V	
lj –	Input Leakage Current	5.5			±1.0	μA	$0 \le V_{IN} \le 5.5V$
		0			10	μA	V _{IN} = 5.5V
I _O	Output Current	4.5	0.25			mA	BiasV = 2.4V
							$B_X = 0$
I _{OZH} , I _{OZL}	OFF-STATE Leakage Current	5.5			±1.0	μA	$0 \le A \le V_{CC}, V$
							$BiasV_1 = BiasV_2 = 5.5V$
I _{OZH} , I _{OZL}	OFF-STATE Leakage Current	5.5			±1.0	μA	$0 \le B \le V_{CC}, V$
							$BiasV_1 = BiasV_2 = Floating$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	V _{IN} = 0V, I _{IN} = 64 mA
	(Note 6)	4.5		4	7	Ω	V _{IN} = 0V, I _{IN} = 30 mA
		4.5		8	14	Ω	V _{IN} = 2.4V, I _{IN} = 15 mA
		4.0		11	20	Ω	V _{IN} = 2.4V, I _{IN} = 15 mA
I _{CC}	Quiescent Supply Current	5.5			3	μA	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One input at 3.4V
							Other inputs at V _{CC} or GND
IBIAS	Bias Pin Leakage Current	5.5			±1.0	μA	SEL_1 , $SEL_2 = 0V$
							$B_X = 0V$, Bias $V_X = 5.5V$
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$0.0 \text{ mA} \ge I_{IN} \ge -50 \text{ mA}$
							$SEL_{1}, SEL_{2} = 5.5V$


DC Electrical Characteristics

Note 5: Typical values are at V_{CC} = 5.0V and T_A = +25 $^\circ\text{C}$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

			T _A = -40 C ₁ = 50 pF,	°C to +85 °(
Symbol	Parameter		= 4.5 – 5.5V		= 4.0V	Units	Conditions	Figure No
		Min	Max	Min	Max			
t _{PHL} , t _{PLH}	A or B, to B or A (Note 7)		0.25		0.25	ns	V _I = OPEN	Figure 2 Figure 3
t _{PZH}	Output Enable Time, SEL to A, B	0.5	4.0		4.5	ns	V _I = OPEN for t _F BiasV = GND	÷
t _{PZL}	Output Enable Time, SEL to A, B	1.0	4.8		5.5	ns	$V_I = 7V$ for t_{PZL} BiasV = 3V	Figure 2 Figure 3
t _{PHZ}	Output Disable Time, SEL to A, B	1.0	5.9		6.9	ns	V _I = Open for t _P BiasV = GND	HZ Figure 2 Figure 3
t _{PLZ}	Output Disable Time, SEL to A, B	1.0	7.4		7.0	ns	$V_I = 7V$ for t_{PLZ} BiasV = 3V	Figure 2 Figure 3
-	citance (Note 8)							
Symbol	Parameter		Тур		Max	Units	-	Conditions
C _{IN}	Control pin Input Capacitance		4			pF	V _{CC} = 5.0	
CI/O OFF	Input/Output Capacitance "O = +25°C, f = 1 Mhz, Capacitance is		8			pF	$V_{CC} = 5.0$	V, Switch OFF
Unde Symbol	Parameter Output Voltage During Unders	ľ	Min	Тур г _{ОН} – 0.3	Max	Uni V		Conditions
Symbol V _{OUTU}	Parameter	hoot in the second seco	Min 2.5 V	′ _{ОН} – 0.3	Dutput signal i	V ntegrity durin V _{TR1}	Figure 1	
Symbol V _{OUTU} Note 9: This	Parameter Output Voltage During Unders	hoot	Vin 2.5 V apabilities by V _{CC} D.U.1	⁷ OH − 0.3 maintaining o	output signal i	V ntegrity durin V _{TR1}	Figure 1	
Symbol V _{OUTU} Note 9: This event.	Parameter Output Voltage During Unders	hoot vice's protective of VIN E	Vin 2.5 V apabilities by V _{CC} D.U.1	RE 1.	sient t Volta	VTR1) 10pF	Figure 1	t voltage undershoot
Symbol VOUTU Note 9: This event.	Parameter Output Voltage During Unders s is intended to characterize the de (e Test Condition	hoot	Vin 2.5 V apabilities by V _{CC} D.U.1	RE 1.	Sient	VTR1) 10pF	Figure 1 ng an input transier	t voltage undershoot
Symbol VOUTU Note 9: This event.	Parameter Output Voltage During Unders s is intended to characterize the de (((((((((((((((((((hoot	Vin 2.5 V apabilities by V _{CC} D.U.1	RE 1.	sient t Volta	VTR1) 10pF	Figure 1 ng an input transier	t voltage undershoot
Symbol V _{OUTU} Note 9: This event.	Parameter Output Voltage During Unders s is intended to characterize the de is is intended to characterize the de de Test Condition rameter Value A See Waveform - R2 100K RI 11.0	hoot	Vin 2.5 V apabilities by V _{CC} D.U.1	RE 1.	sient t Volta	VTR1) 10pF	Figure 1 ng an input transier	t voltage undershoot

