FAIRCHILD

MM74HC132 Quad 2-Input NAND Schmitt Trigger

General Description

September 1983 Revised February 1999

Features

- Typical propagation delay: 12 ns
- Wide power supply range: 2V–6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC}=4.5V

Ordering Code:

MM74HC Quad 2-I	JCTOR™	D Schmitt	September 1983 Revised February 1999
technology to ach noise immunity of to drive 10 LS-TT The 74HC logic fa with the standard	e utilizes advanced ieve the low power standard CMOS, as loads. mily is functionally ar 74LS logic family. All e to static discharg	silicon-gate CMOS dissipation and high well as the capability and pinout compatible inputs are protected e by internal diode	 Features Typical propagation delay: 12 ns Wide power supply range: 2V–6V Low quiescent current: 20 μA maximum (74HC Series) Low input current: 1 μA maximum Fanout of 10 LS-TTL loads Typical hysteresis voltage: 0.9V at V_{CC}=4.5V
Ordering C			
Order Number	Package Number		Package Description
Order Number MM74HC132M	Package Number M14A		Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
Order Number MM74HC132M	Package Number		5
	Package Number M14A	14-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body

' to the ordering code. (Tape and Reel not available in N14A.) also available in Tape and Reel. Specify by appending the suffix letter "X"

Connection Diagram Logic Diagram Pin Assignment for DIP, SOIC, SOP, and TSSOP V_{CC} B4 A4 Y4 B3 A3 Y3 11 14 12 10 ç Y = ĀB 6 5 17 **B**2 ٧2 GND A 1 В1 A2 Y 1 Top View (<u>11)</u> ¥4

© 1999 Fairchild Semiconductor Corporation DS005309.prf

(Note 2)

Supply Voltage (V_{CC})

DC Input Voltage (VIN)

Power Dissipation (P_D) (Note 3)

S.O. Package only

DC Output Voltage (V_{OUT})

Clamp Diode Current (I_{IK}, I_{OK})

DC Output Current, per pin (I_{OUT})

DC V_{CC} or GND Current, per pin (I_{CC})

Storage Temperature Range (T_{STG})

Absolute Maximum Ratings(Note 1)

Lead Temperature (T_L) (Soldering 10 seconds)

-0.5 to +7.0V

 $\pm 20 \text{ mA}$

±25 mA

±50 mA

600 mW 500 mW

-1.5 to $V_{CC}\,{+}1.5V$

–0.5 to V_{CC} +0.5V

-65°C to +150°C

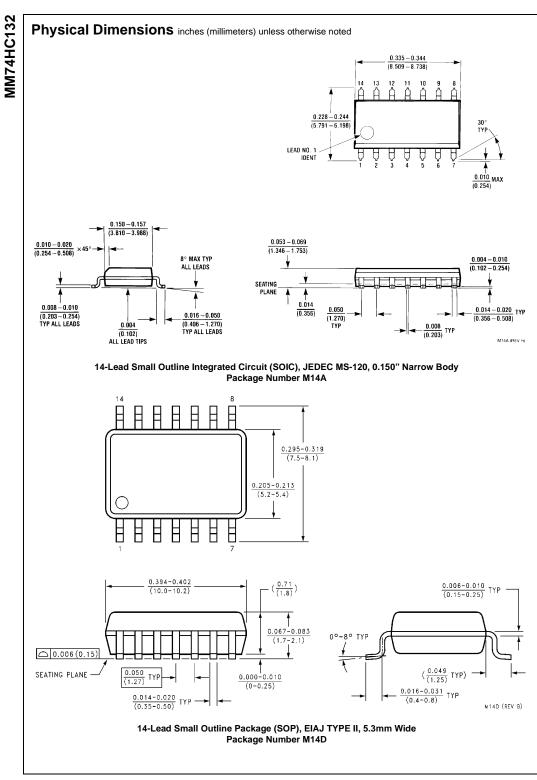
260°C

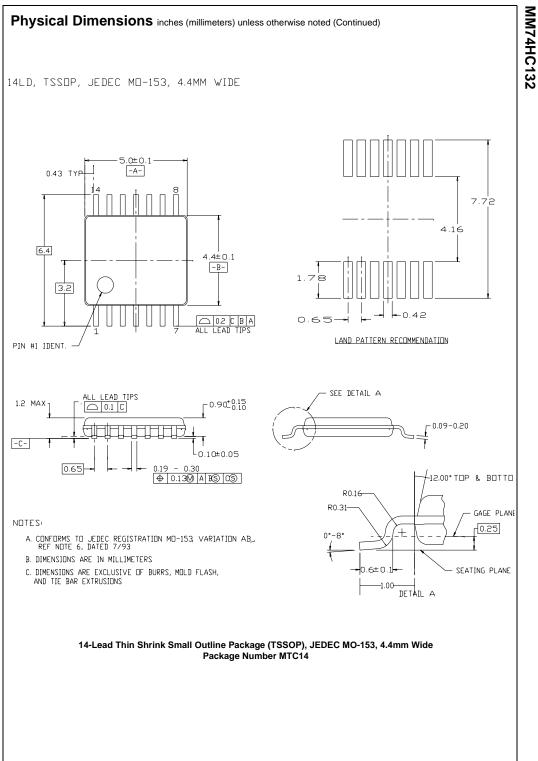
Recommended Operating Conditions

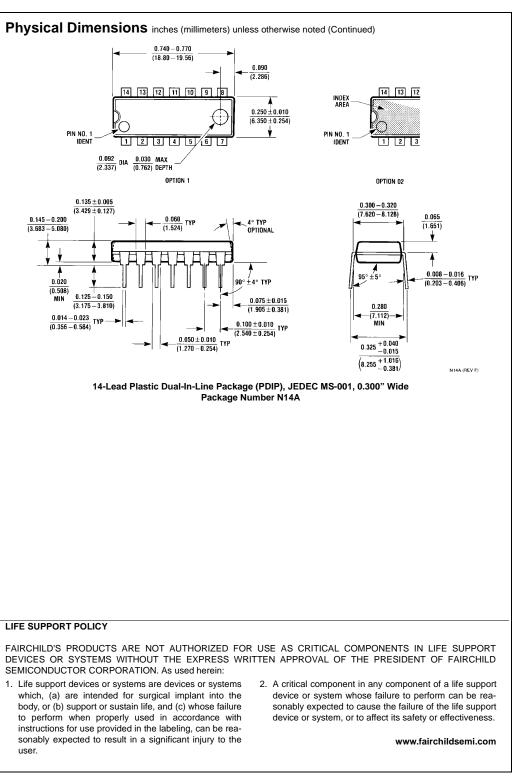
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V _{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T _A)	-40	+125	°C
Note 1: Absolute Maximum Ratings are those age to the device may occur.	e values	beyond wh	ich dam-
Note 2: Unless otherwise specified all voltage	s are refe	erenced to	ground.
Note 3: Power Dissipation temperature derati	ing — pl	actic "N" na	ckage:

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$ $T_A = -40$ to 125°		C Units	
Cynnoor	, arameter			Тур	Guaranteed L		imits	5111.5	
V _{T+}	Positive Going	Min	2.0V		1.0	1.0	1.0	V	
	Threshold Voltage		4.5V		2.0	2.0	2.0	V	
			6.0V		3.0	3.0	3.0	V	
		Max	2.0V		1.5	1.5	1.5	V	
			4.5V		3.15	3.15	3.15	V	
			6.0V		4.2	4.2	4.2	V	
V _{T-}	Negative Going	Min	2.0V		0.3	0.3	0.3	V	
	Threshold Voltage		4.5V		0.9	0.9	0.9	V	
			6.0V		1.2	1.2	1.2	V	
		Max	2.0V		1.0	1.0	1.0	V	
			4.5V		2.2	2.2	2.2	V	
			6.0V		3.0	3.0	3.0	V	
V _H	Hysteresis Voltage	Min	2.0V		0.2	0.2	0.2	V	
			4.5V		0.4	0.4	0.4	V	
			6.0V		0.5	0.5	0.5	V	
		Max	2.0V		1.0	1.0	1.0	V	
			4.5V		1.4	1.4	1.4	V	
			6.0V		1.5	1.5	1.5	V	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V	2.0	1.9	1.9	1.9	V	
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	4.5V	4.5	4.4	4.4	4.4	V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	6.0V	6.0	5.9	5.9	5.9	V	
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V	
		I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V	0	0.1	0.1	0.1	V	
	Output Voltage	I _{OUT} ≤ 20 μA	4.5V	0	0.1	0.1	0.1	V	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	6.0V	0	0.1	0.1	0.1	V	
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μΑ	
	Supply Current	$I_{OUT} = 0 \ \mu A$							


Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{QH}, and V_{QL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


AC E	Electrical Charac	teristics								
$V_{CC} = 5$	/, $T_A = 25^{\circ}C$, $C_L = 15 \text{ pF}$, $t_r = t_f =$	6 ns								
Symb	pol Paramete	r	Condition	ons		Typ Guaranteed U		Uni	nits	
t _{PHL} , t _{PLH}	Maximum Propagation	Delay				12		20	ns	
	Electrical Character $C_L = 50 \text{ pF}, t_r = t_f = 6$		se specified)	-		T 404	- 0500	T 55 44	40500	
Symbol	Parameter	Condition	s V _{CC}	T _A = 25°C		$T_{A} = -40$ to 85°C $T_{A} = -5$		T _A = -55 to	0 125°C	Units
		201101		Тур	Тур		Guaranteed Limits			


t _{PHL} , t _{PLH}	Maximum		2.0V	63	125	158	186	ns
	Propagation Delay		4.5V	13	25	32	37	ns
			6.0V	11	21	27	32	ns
t _{TLH} , t _{THL}	Maximum Output		2.0V	30	75	95	110	ns
1	Rise and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
CPD	Power Dissipation	(per gate)		130				pF
	Capacitance (Note 5)							
CIN	Maximum Input Capacitance				5	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC132

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.