FAIRCHILD

SEMICONDUCTOR TM

MM74HC244 Octal 3-STATE Buffer

General Description

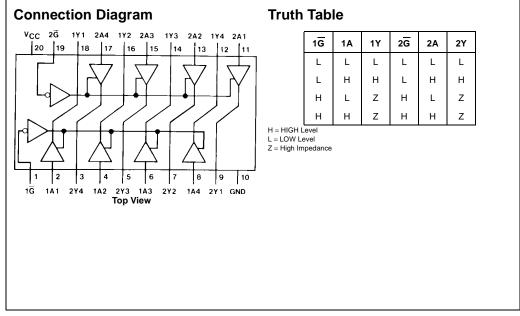
The MM74HC244 is a non-inverting buffer and has two active low enables (1G and 2G); each enable independently controls 4 buffers. This device does not have Schmitt trigger inputs.

These 3-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. All three devices have a fanout of 15 LS-TTL equivalent inputs.

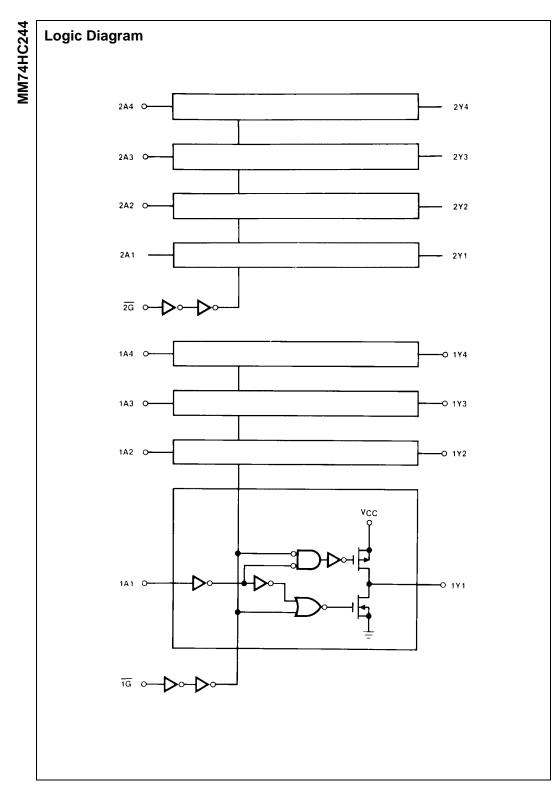
All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 14 ns
- 3-STATE outputs for connection to system buses
- Wide power supply range: 2–6V
- Low quiescent supply current: 80 μA
- Output current: 6 mA


September 1983 Revised August 2000

MM74HC244 Octal 3-STATE Buffer


Ord	lering	Code:	
-----	--------	-------	--

Order Number	ber Package Number Package Description		
MM74HC244WM M20B		20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide	
MM74HC244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide	
MM74HC244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	
MM74HC244N N20A		20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2000 Fairchild Semiconductor Corporation DS005327

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	± 35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	\pm 70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A) Input Rise or Fall Times		+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those	e values	beyond wh	ich dam-

Note 1: Absolute Maximum Ratings are those values beyond which dam age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A=-40$ to $85^\circ C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Faidilielei	Conditions	•cc	Тур		Guaranteed Limits		
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						V
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	5.7	5.4	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 7.8 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		± 0.1	± 1.0	±1.0	μΑ
	Current							
I _{OZ}	Maximum 3-STATE	$V_{IN} = V_{IH}$, or V_{IL}	6.0V		± 0.5	± 5	±10	μΑ
	Output Leakage	$V_{OUT} = V_{CC}$ or GND						
	Current	$\overline{G} = V_{IH}$						
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \ \mu A$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

3

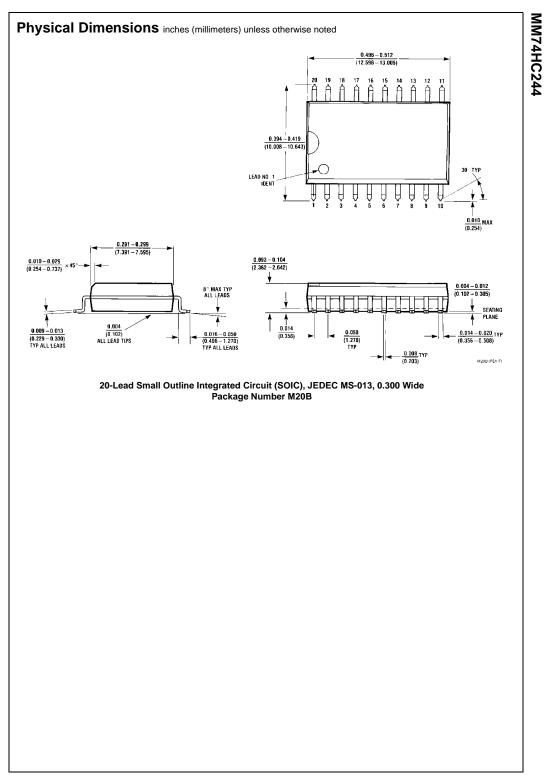
www.fairchildsemi.com

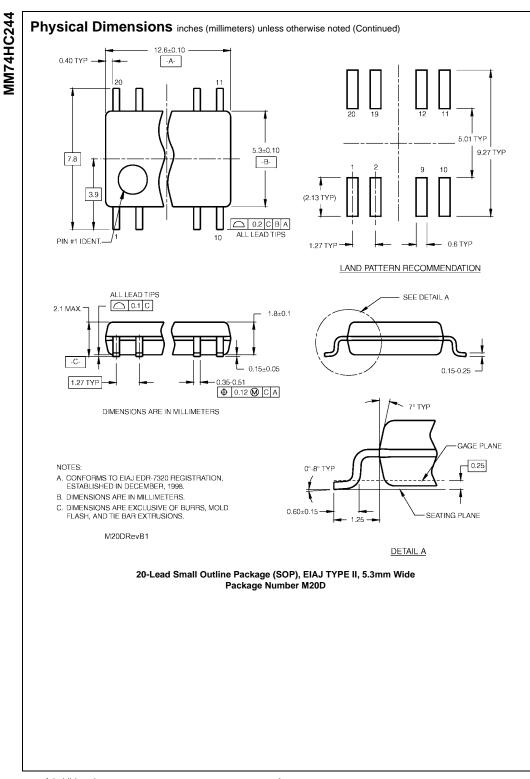
MM74HC244

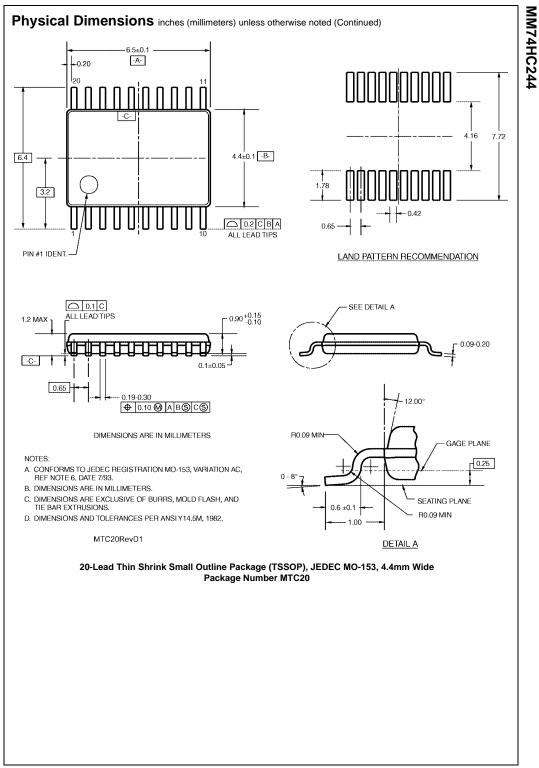
4
4
2
C
Т
4
~
5
_
5
~

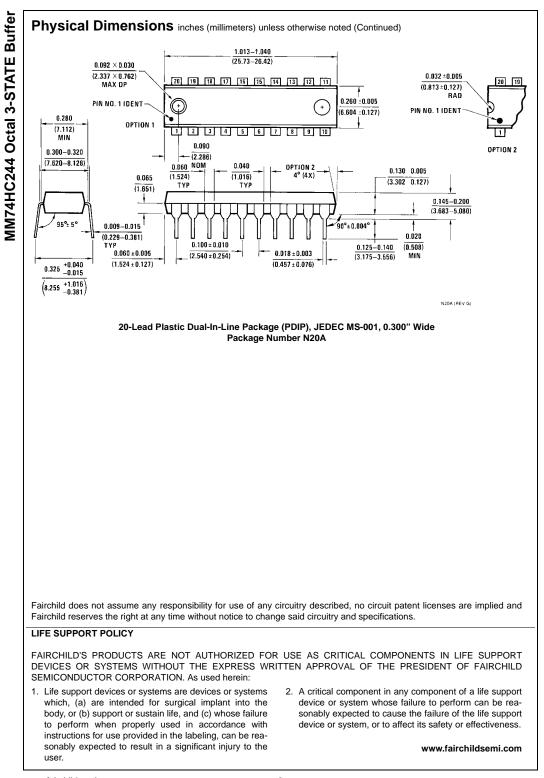
AC Electrical Characteristics

 $V_{CC} = 5V, \ T_A = 25^{\circ}C, \ t_r = t_f = 6 \ \text{ns}$


	Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
	t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 45 pF	14	20	ns
		Delay				
ľ	t _{PZH} , t _{PZL}	Maximum Enable Delay	$R_L = 1 k\Omega$	17	28	ns
		to Active Output	C _L = 45 pF			
ľ	t _{PHZ} , t _{PLZ}	Maximum Disable Delay	$R_L = 1 k\Omega$	15	25	ns
		from Active Output	$C_L = 5 \text{ pF}$			


AC Electrical Characteristics


 $V_{CC} = 2.0V-6.0V, C_{L} = 50 \text{ pF}, t_r = t_f = 6 \text{ ns} \text{ (unless otherwise specified)}$


Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
Symbol			• CC	Тур		Guaranteed L	imits	Units	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	58	115	145	171	ns	
	Delay	$C_L = 150 \text{ pF}$	2.0V	83	165	208	246	ns	
		$C_L = 50 \text{ pF}$	4.5V	14	23	29	34	ns	
		$C_L = 150 \text{ pF}$	4.5V	17	33	42	49	ns	
		$C_L = 50 \text{ pF}$	6.0V	10	20	25	29	ns	
		C _L = 150 pF	6.0V	14	28	35	42	ns	
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$							
	Time	C _L = 50 pF	2.0V	75	150	189	224	ns	
		C _L = 150 pF	2.0V	100	200	252	298	ns	
		C _L = 50 pF	4.5V	15	30	38	45	ns	
		C _L = 150 pF	4.5V	30	40	50	60	ns	
		C _L = 50 pF	6.0V	13	26	32	38	ns	
		C _L = 150 pF	6.0V	17	34	43	51	ns	
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	75	150	189	224	ns	
	Time	$C_L = 50 \text{ pF}$	4.5V	15	30	38	45	ns	
			6.0V	13	26	32	38	ns	
t _{TLH} , t _{THL}	Maximum Output		2.0V		60	75	90	ns	
	Rise and Fall Time		4.5V		12	15	18	ns	
			6.0V		10	13	15	ns	
CPD	Power Dissipation	(per buffer)							
	Capacitance (Note 5)	$\overline{G} = V_{IH}$		12				pF	
		$\overline{G} = V_{IL}$		50				pF	
CIN	Maximum Input			5	10	10	10	pF	
	Capacitance								
COUT	Maximum Output			10	20	20	20	pF	
	Capacitance						1		

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}^2 f + I_{CC}$.

