FAIRCHILD

BEMICONDUCTOR

MM74HC373 3-STATE Octal D-Type Latch

General Description

The MM74HC373 high speed octal D-type latches utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

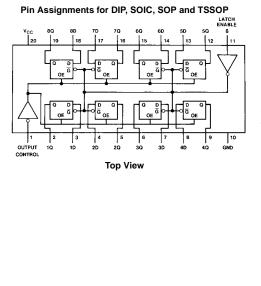
When the LATCH ENABLE input is HIGH, the Q outputs will follow the D inputs. When the LATCH ENABLE goes LOW, data at the D inputs will be retained at the outputs until LATCH ENABLE returns HIGH again. When a high logic level is applied to the OUTPUT CONTROL input, all outputs go to a high impedance state, regardless of what

signals are present at the other inputs and the state of the storage elements.

September 1983

Revised February 1999

The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.


Features

- Typical propagation delay: 18 ns
- Wide operating voltage range: 2 to 6 volts
- Low input current: 1 μA maximum
- Low quiescent current: 80 µA maximum (74 Series)
- Output drive capability: 15 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available i	n Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

Output	Latch	Data	373
Control	Enable		Output
L	Н	Н	Н
L	н	L	L
L	L	х	Q ₀
н	Х	Х	Z

H = HIGH Level

 $Q_0 = Level of output before steady-state input conditions were established. Z = High Impedance$

MM74HC373 3-STATE Octal D-Type Latch

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (VIN)	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V _{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} ,V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values b	eyond whi	ch dam-

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

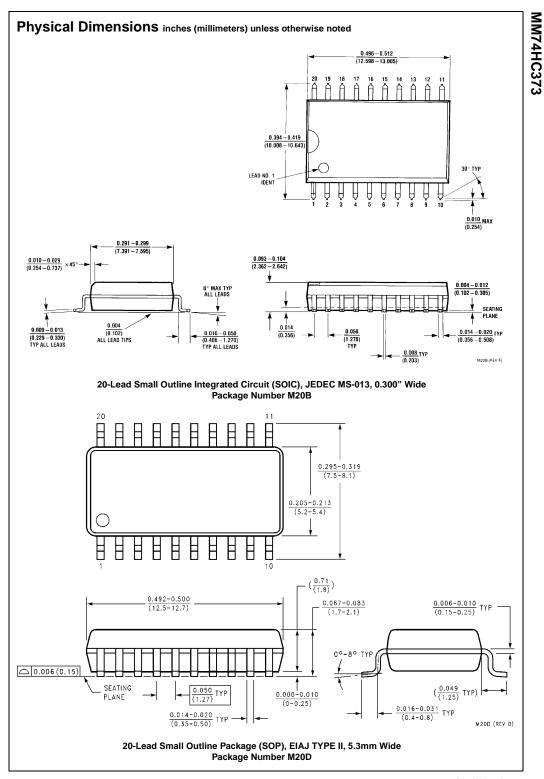
DC Electrical Characteristics

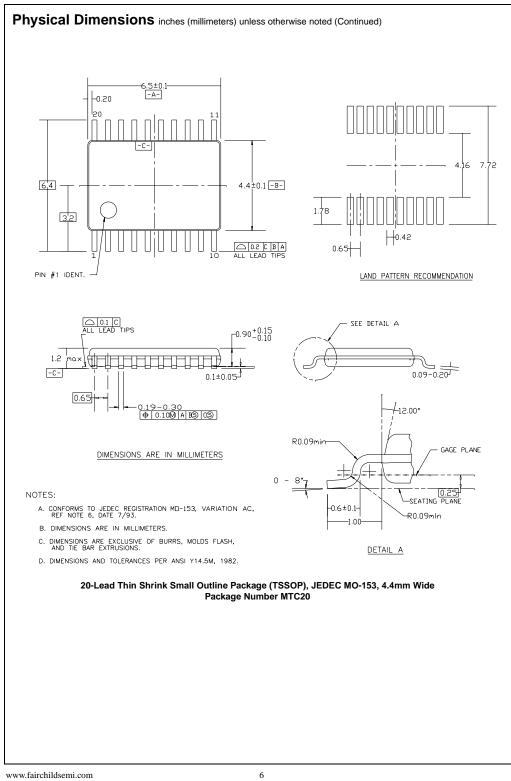
Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A=-40$ to $85^\circ C$	$T_A = -55$ to $125^\circ C$	Units
Symbol	Faianetei	Conditions	• CC	Тур		Guaranteed L	imits	Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		I _{OUT} ≤ 6.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 7.8 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{OZ}	Maximum 3-STATE	$V_{IN} = V_{IH} \text{ or } V_{IL}, \text{ OC} = V_{IH}$	6.0V		±0.5	±5	±10	μΑ
	Output Leakage	$V_{OUT} = V_{CC} \text{ or GND}$						
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \ \mu A$						

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{CH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

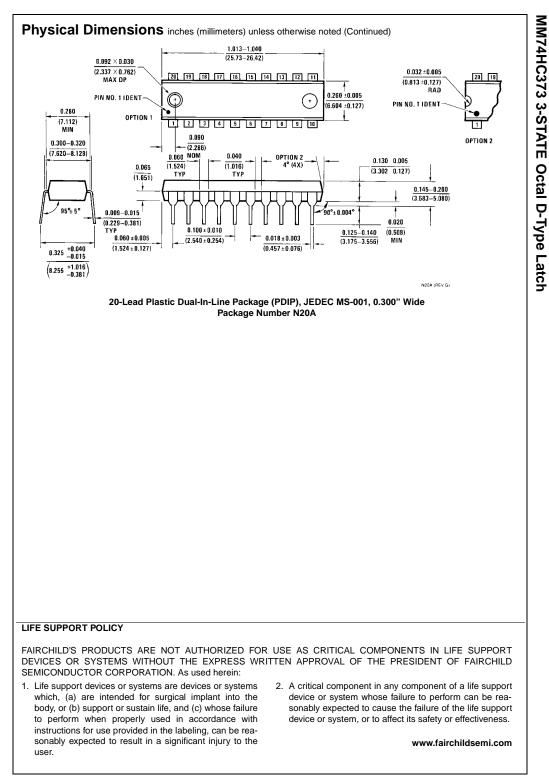
AC Electrical Characteristics

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Data to Q	C _L = 45 pF	18	25	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, LE to Q	C _L = 45 pF	21	30	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 k\Omega$	20	28	ns
		$C_L = 45 \text{ pF}$			
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \ k\Omega$	18	25	ns
		C _L = 5 pF			
t _S	Minimum Set Up Time			5	ns
t _H	Minimum Hold Time			10	ns
t _W	Minimum Pulse Width		9	16	ns


AC Electrical Characteristics


 $V_{CC}\,{=}\,2.0{-}6.0\text{V},\,C_L\,{=}\,50$ pF, $t_f\,{=}\,6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Parameter	Conditions	*cc	Тур		Guaranteed L	imits	Units
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	50	150	188	225	ns
	Delay, Data to Q	C _L = 150 pF	2.0V	80	200	250	300	ns
		C _L = 50 pF	4.5V	22	30	37	45	ns
		C _L = 150 pF	4.5V	30	40	50	60	ns
		C _L = 50 pF	6.0V	19	26	31	39	ns
		C _L = 150 pF	6.0V	26	35	44	53	ns
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	63	175	220	263	ns
	Delay, LE to Q	C _L = 150 pF	2.0V	110	225	280	338	ns
		C _L = 50 pF	4.5V	25	35	44	52	ns
		C _L = 150 pF	4.5V	35	45	56	68	ns
		$C_{L} = 50 pF$	6.0V	21	30	37	45	ns
		C _L = 150 pF	6.0V	28	39	49	59	ns
t _{PZH} , t _{PZL}	Maximum Output	$R_L = 1 k\Omega$						
	Enable Time	C _L = 50 pF	2.0V	50	150	188	225	ns
		C _L = 150 pF	2.0V	80	200	250	300	ns
		$C_L = 50 \text{ pF}$	4.5V	21	30	37	45	ns
		C _L = 150 pF	4.5V	30	40	50	60	ns
		$C_{1} = 50 \text{ pF}$	6.0V	19	26	31	39	ns
		C _L = 150 pF	6.0V	26	35	44	53	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_1 = 1 k\Omega$	2.0V	50	150	188	225	ns
1112-1122	Disable Time	C _L = 50 pF	4.5V	21	30	37	45	ns
			6.0V	19	26	31	39	ns
ts	Minimum Set Up Time		2.0V		50	60	75	ns
0			4.5V		9	13	15	ns
			6.0V		9	11	13	ns
t _H	Minimum Hold Time		2.0V		5	5	5	ns
			4.5V		5	5	5	ns
			6.0V		5	5	5	ns
t _W	Minimum Pulse Width		2.0V	30	80	100	120	ns
			4.5V	10	16	20	24	ns
			6.0V	9	14	18	20	ns
t _{THL} , t _{TLH}	Maximum Output Rise	C _L = 50 pF	2.0V	25	60	75	90	ns
THE? TER	and Fall Time	2	4.5V	7	12	15	18	ns
			6.0V	6	10	13	15	ns
C _{PD}	Power Dissipation	(per latch)		-				
- FU	Capacitance (Note 5)	$OC = V_{CC}$		30				pF
		OC = OC		50				pF
CIN	Maximum Input Capacitance		_	5	10	10	10	pF


MM74HC373

Symbol		Conditions	Vcc	IA=	25°C	$I_A = -40 10.85 C$	$T_{A} = -55$ to $125^{\circ}C$	Unit
-		Conditions	¥CC	Тур		Guaranteed L		
Соит	Maximum Output Capacitance			15	20	20	20	pF
Note 5: I _S = C _{PD}	$C_{\rm PD}$ determines the no load dynar $V_{\rm CC}$ f + I_{\rm CC}.	nic power consumption, P _D	= C _{PD} V _{CC} ²	t + Ice Vce.	, and the no	load dynamic current	consumption,	

MM74HC373

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.