FAIRCHILD

SEMICONDUCTOR

MM74HC4060 14 Stage Binary Counter

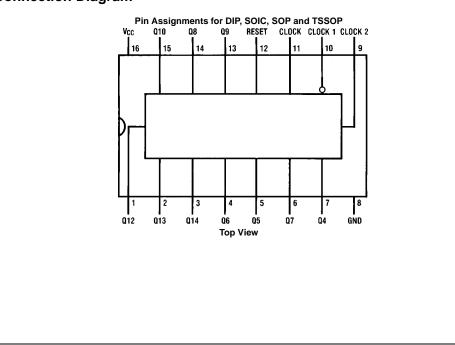
General Description

The MM74HC4060 is a high speed binary ripple carry counter. These counters are implemented utilizing advanced silicon-gate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high noise immunity of CMOS.

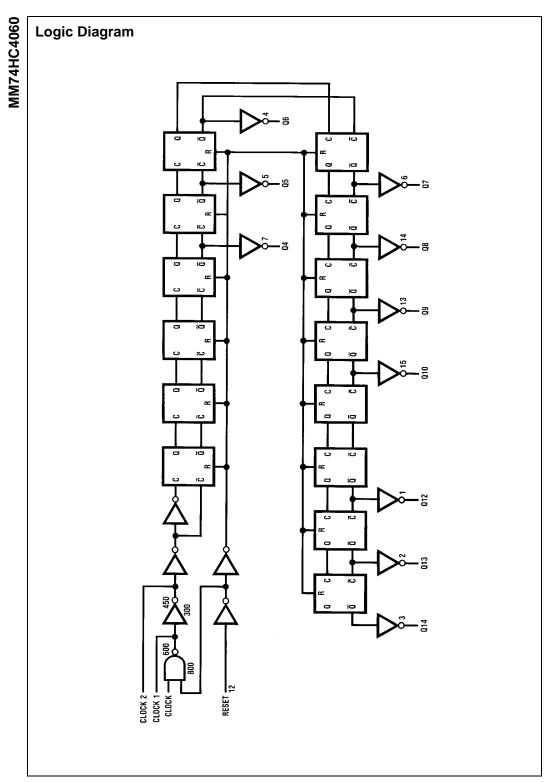
The MM74HC4060 is a 14-stage counter, which device increments on the falling edge (negative transition) of the input clock, and all their outputs are reset to a low level by applying a logical high on their reset input. The MM74HC4060 also has two additional inputs to enable easy connection of either an RC or crystal oscillator.

August 1984 Revised February 1999

This device is pin equivalent to the CD4060. All inputs are protected from damage due to static discharge by protection diodes to V_{CC} and ground.


Features

- Typical propagation delay: 16 ns
- Wide operating voltage range: 2–6V
- Low input current: 1 μA maximum
- Low quiescent current: 80 µA maximum (74 Series)
- Output drive capability: 10 LS-TTL loads


Ordering Code:

Order Number	Package Number	Package Description			
MM74HC4060M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM74HC4060SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HC4060MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HC4060N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS005354.prf

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{CD})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

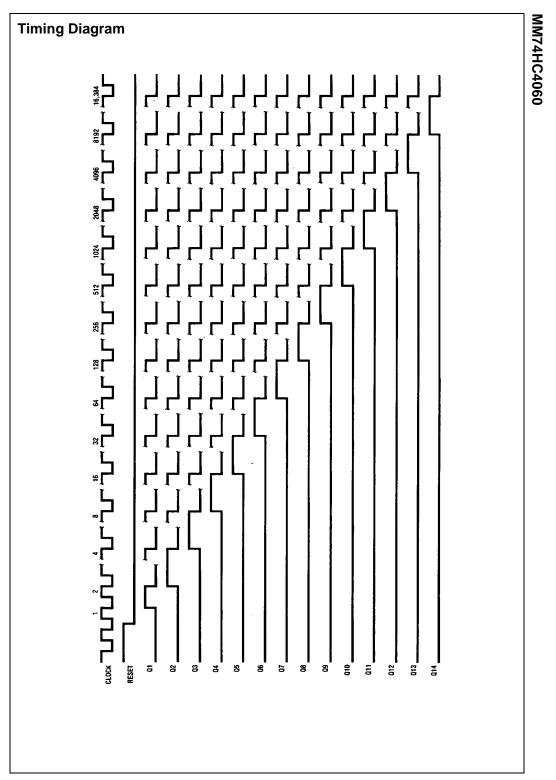
	Min	Max	Units				
Supply Voltage (V _{CC})	2	6	V				
DC Input or Output Voltage							
(V _{IN} , V _{OUT})	0	V _{CC}	V				
Operating Temperature Range (T _A)	-40	+85	°C				
Input Rise or Fall Times							
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns				
$V_{CC} = 4.5V$		500	ns				
$V_{CC} = 6.0V$		400	ns				
Note 1: Maximum Ratings are those values beyond which damage to the device may occur.							

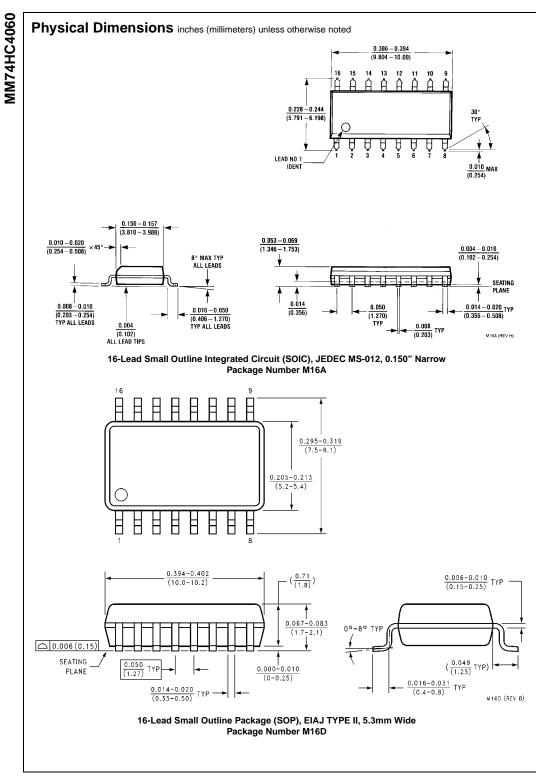
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating: plastic "N" package: -12 mW/°C from 65°C to 85°C.

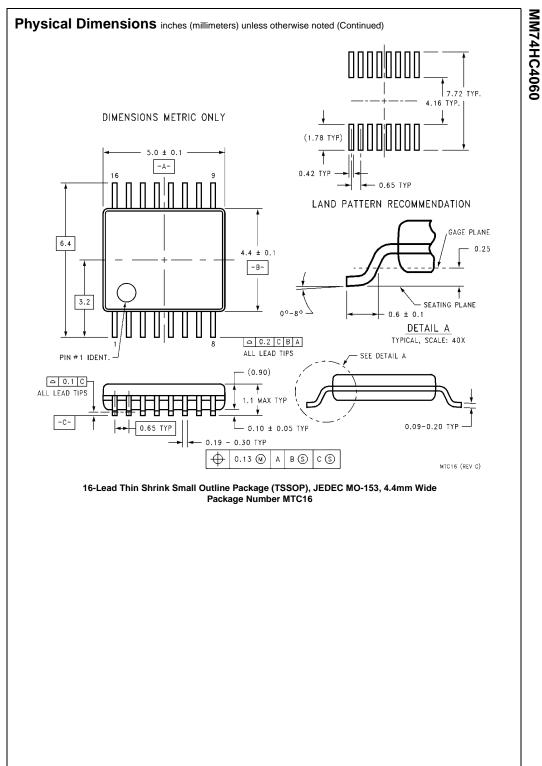
DC Electrical Characteristics (Note 4)

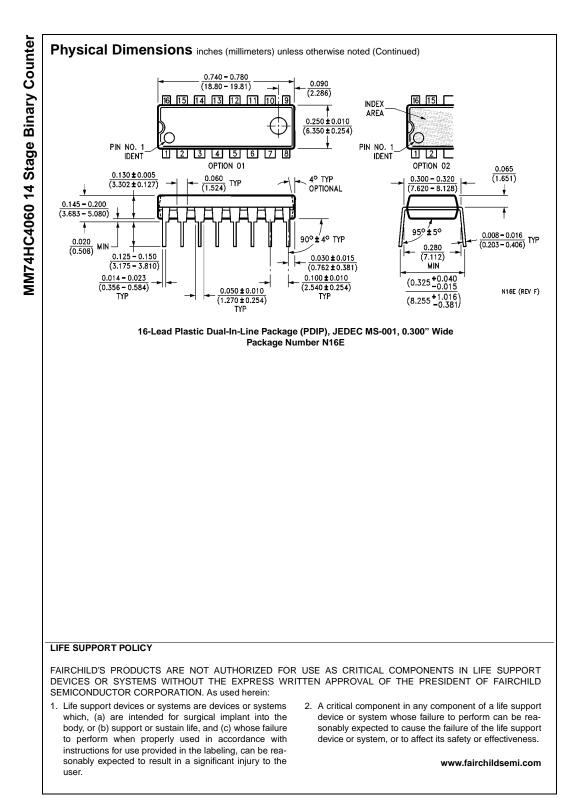
Cumbal	Denem		Conditions	V	T _A =	25°C	$T_A=-40$ to $85^\circ C$	$T_A = -55$ to $125^{\circ}C$	Units	
Symbol	Parameter		Conditions	v _{cc}	Тур		Guaranteed Limits			
VIH	Minimum HIGH			2.0V		1.5	1.5	1.5	V	
	Level Voltage			4.5V		3.15	3.15	3.15	V	
	(Not Applicable t	to Pins 9 & 10)		6.0V		4.2	4.2	4.2	V	
V _{IL}	Maximum LOW	Level		2.0V		0.5	0.5	0.5	V	
	Input Voltage			4.5V		1.35	1.35	1.35	V	
	(Not Applicable t	to Pins 9 & 10)		6.0V		1.8	1.8	1.8	V	
V _{OH}	Minimum HIGH Level		$V_{IN} = V_{IH} \text{ or } V_{IL}$							
	Output Voltage		$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V	
				4.5V	4.5	4.4	4.4	4.4	V	
				6.0V	6.0	5.9	5.9	5.9	V	
		Except Pins	$V_{IN} = V_{IH}$ or V_{IL}							
		9 & 10	$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V	
			$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V	
		Pins	$V_{IN} = V_{IH}$ or V_{IL}			3.98	3.84	3.7	V	
		9 & 10	I _{OUT} = 0.4 mA			5.48	5.34	5.2	V	
			I _{OUT} = 0.52 mA							
V _{OL}	Maximum LOW	Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$							
	Output Voltage		$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V	
				4.5V	0	0.1	0.1	0.1	V	
				6.0V	0	0.1	0.1	0.1	V	
		Except Pins	$V_{IN} = V_{IH}$ or V_{IL}							
		9 & 10	$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V	
			$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V	
		Pins	$V_{IN} = V_{IH}$ or V_{IL}			0.26	0.33	0.4	V	
		9 & 10	I _{OUT} = 0.4 mA			0.26	0.33	0.4	V	
			I _{OUT} = 0.52 mA							
I _{IN}	Maximum Input	Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
Icc	Maximum Quies	cent	V _{IN} = V _{CC} or GND				1			
	Supply Current		$I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μA	

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


3


www.fairchildsemi.com


MM74HC4060


Symb	$T_A = 25^{\circ}C, C_L = 15 \text{ pF}, t_r = t_f =$		Cond	ditions		Б	uaranteed	Un
-,						.78	Limit	
f _{MAX}	Maximum Clock Freque	ency					30	MF
t _{PHL} , t _{PLH}	Maximum Propagation		(Note 5)			40	20	n
	Delay to Q ₄							
t _{PHL} , t _{PLH}	Maximum Propagation					16	40	n
	Delay to any Q							
t _{REM}	Minimum Reset					10	20	n
	Removal Time							
t _W	Minimum Pulse Width					10	16	n
V _{CC} = 2.0 Symbol	DV to 6.0V, $C_L = 50$ pF, $t_f = t_f = 6$ Parameter	ns (unless otherw		T _A = Typ	25°C	T _A = -40 to 85°C Guaranteed L		25°C
f _{MAX}	Maximum Operating		2.0V	ייני	6	5	4	
'MAA	Frequency		4.5V		30	24	20	
			6.0V		35	28	24	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	120	380	475	171	
1112 12.	Delay Clock to Q ₄		4.5V	42	76	95	114	
			6.0V	35	65	81	97	
t _{PHL}	Maximum Propagation		2.0V	72	240	302	358	
	Delay Reset to any Q		4.5V	24	48	60	72	
			6.0V	20	41	51	61	
$t_{\text{PHL}},t_{\text{PLH}}$	Maximum Propagation		2.0V		125	156	188	
	Delay Between Stages		4.5V		25	31	38	
	Q _n to Q _{n+1}		6.0V		21	26	31	
t _{REM}	Minimum Reset		2.0V		100	125	150	
	Removal Time		4.5V		20	25	30	
	M. Jacobs Dude & Mildela		6.0V		17	21	25	
t _W	Minimum Pulse Width		2.0V		80	100	120	ļ
			4.5V 6.0V		16 14	20 17	24 20	
t _r , t _f	Maximum Input Rise and		0.0V		14	1000	1000	
ւր, պ	Fall Time		2.0V 4.5V		500	500	500	
			4.5V 6.0V		400	400	400	
t _{THL} , t _{TLH}	Maximum Output Rise		2.0V	30	75	95	110	
The rea	and Fall Time		4.5V	10	15	19	22	
			6.0V	9	13	16	19	
C _{PD}	Power Dissipation	(per package	e)	55		+		
	Capacitance (Note 6)							
C _{IN}	Maximum Input			5	10	10	10	

Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f_{+}I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f_{+}I_{CC}$.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.